
I I I I'I .

AD-A241 860 , C

DTIC

Master of Science in Electrical Engineering D

Thomas E. Flynn, BEng

Captain

Canadian Armed Forces (Air)

_ AF 7/'E!N/ -- 5 -oI

~ I Tlii:- dccurnent has been, approved
__ _L pu.blic release and sale; its

di,tiibution is unlimited.

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air F. rce Base, Ohio

91 10 25 041



AFIT/GE/ENG/9 1S-01 /

DEVELOPMENT OF A
PERSONAL COMPUTER SIMULATION PROGRAM

OF THE LN-94 INERTIAL NAVIGATION SYSTEM

THESIS

Presented to the Faculty of the School of Engineering D T IC
of the Air Force Institute of Technology E LL.CTE

Air University OCT 2 3 1091

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Thomas E. Flynn, BEng

Captain

Canadian Armed Forces (Air)

A F 17/ 'E/EN I? -o

June 1991

Approved for public release; distribution unlimited



REPORT DOCUMENTATION PAGE fOrm Appro0ed

OM8 No 0704-0188

1. AGENCY USE ONLY (Leave blanK) 1.REPORT DATE 3. REPORT TYPE AND DATES COVEREDJune 1991R MS Thesis

4. TITLE AND SUBTITLE 5 FUNDING NUMBERS

DEVELOPMENT OF A PERSONAL COMPUTER SIMULATION PROGRAM
OF THE LN-94 INERTIAL NAVIGATION SYSTEM

6. AUTHOR(S)

Thomas E Flynn, Capt, CAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force institute of Technology
Wright-Patterson AFB, OH 45433 AFIT/GE/ENG/91S-01

9. SPONSORING, MONITORING AGENCY NAME(S) AND AL',RESS(ES) 10. SPONSORING;'MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION. AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximrnum 200 words;

This thesis develops a simulation that emulates a Litton LN-94 INS. Real-
time simulation is achieved for a stationary navigation case and a straight-and-
rlevel flight trajectory are provided to exercise the simulation dynamics. The
Juser interface is simple and requires little previous knowledge to operate. The
Icommunication link with the MILSTD 1553B bus provide a realistic environmnet in
which to collect and analyze data.

The simultion is processed on an 80386 IBM compatible personsl computer.
FA23-state INS error model is implemented and integration is performed by a fifth-
order Kutta-Merson routine. The simulation is interfaced to a plotting routine
iand data collection, both data type and rate, is controlled through the user interface

,Simulation status and output is viewed from the simulation screen or on the MILSTD
11553B bus monitor.

The simulation is programmed in C programming language. Program development
;is discussed and flow charts of the major modules providec. The simulation validation
!process is outlined and results are presented.

14. SUBJECT TERMS 15. NUMBER OF PAGES

inertial Navigation System, Error Model, Personel Computer 16 PRICE CODE
Simulation, Real time, MITcTD 1553B

17 SECURITY CLASSIFICATION 18 SECURIIY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACTI
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
";S. " 4 - -2 C, 50' ' 2,a o ' ' 9 ';- '-89



Acknowledgements

This research effort represents a great many hours of work and a

personal accomplishment I will look back upon for many years. It also

represents the culmination of a graduate program unparalleled at any

other academic institution. Though my name appears on the flyleaf,

there are a number of others who 4pser-e recognition in thix A.cdLrch.

Without their support and guidance, this thesis would never have been

completed.

Many thanks to my thesis advisor, Capt Randy Paschall, for his

patience and direction and more importantly his understanding at times

when this thesis seemed like an impossible task. A special thanks to my

other thesis committee members, Col Stan Lewantowicz and Dr. Peter

Maybeck, for their valued contributions. Dr. Maybeck's calming approach

during those moments of "panic" proved to be invaluable.

I must also thank Mr Don Smith for giving so generously of his

time to pass on his knowledge of the PC and C language and to Mr Jim

Hirning for his expertise in the Litton model and operation of the

MILSTD 1553 communication bus.

The dedication of these people to the furtherance of higher

education is exceptional. Their willingness to share their vast

knowledge provides me with an asset I will rely upon for the rest of my

life.

Last, but certainly not least, my deepest thanks to my wife

Caroline and my very special children, Thomas, Kaila, James, and

ii



Mallory. Their patience and constant moral support was as instrumental

in the completion of this thesis as the very paper that it is written

on. To my children, a promise, "my time is now your time".

Thomas E. Flynn

. .. i .! % ' ,

B/
'I

iii



Table of Contents

Page

Acknowledgements .11 ............ i

List of Figures . .. .. .. .. .. .. .. .. .. .. .. .. .. vii

List of Tables............................xii

Abstract...............................xiv

I. Introduction............................1-1
1.1 Background.........................1-1
1.2 Research Objectives....................1-3
1.3 Research Approach.....................1-4
1.4 Thesis Overview......................1-8

II. Theory..............................2-1
2.1 LN-94 Inertial Navigation Systemr .............. 2-1

2.1.1 Reference Frames..................2-4
2.1.2 Coordinate Transformations ............. 2-8
2.1.3 LN-94 Error Model ................. 2-10
2.1.4 Error Model Propagation..............2-19

2.2 Intermetrics INS Simulation Program ........... 2-25
2.3 MILSTD 1553B Data Bus..................2-27
2.4 Hardware.........................2-31
2.5 Software.........................2-31
2.6 Summary.........................2-32

III. Program Development......................3-1
3.1 Program Operation Overview ................ 3-2
3.2 Function MAIN......................3-5
3.3 Method of Model Propagation...............3-10

3.3.1 Function INTEGRATE................3-12
3.4 Information Storage....................3-15
3.5 Programming Considerations................3-16
3.6 Development Problems and Tradeoffs. ........... 3-21
3.7 Trajectory Generation..................3-23
3.8 Summary.........................3-24

IV. Simulation Validation......................4-1
4.1 Model Validation......................4-2
4.2 Simulation Validation .................... 4-6

4.2.1 Accuracy Considerations..............4-6
4.2.2 Data Collection.................4-8
4.2.3 Static Navigation Performance Analysis .......4-12
4.2.4 Flight Simulation ................. 4-14

iv



4.3 Noise Process Validation.................4-17

V. Conclusions and Recommendations..................5-1
5.1 Conclusions........................5-1
5.2 Recommendations.....................5-5

5.2.1 Future Research ................... 5-7

Appendix A: FNU 85-1 Word Formats...................A-1
A.1 Command Word Specifications...............A-1
A.2 Word Formats.......................A-5

Appendix B: LN-94 Truth Model Definition...............B-1

Appendix C: LN-94 Dynamic and Noise Matrices.............C-1

Appendix D: Programming Flow Charts..................D-1
D.1 Function MAIN.....................D-2
D.2 Function PROPAGATE.....................D-6
D.3 Function INTEGRATE.....................D-7

Appendix E: Program Functions.....................E-1
E.1 Program Specific Functions ................ E-2

E.1.1 Bitoff......................E-2
E.1.2 Biton......................E-3
E.1.3 Calc_-Time Tag...................E-3
E.1.4 Derivative.....................E-4
E.1.5 DisplayLatLong ................. E-4
E.1.6 DisplayScr'een...................E-5
E.1.7 distim......................E-5
E.1.8 enbtim......................E-6
E.1.9 Extract.....................E-6
E.1.10 HundredsMs....................E-6
E.1.11 initlS53.....................E-7
E.1.12 initialize....................E-7
E.1.13 INSErrorInclude ................ E-8
E.1.14 Insert.....................E-9
E.1.15 Integrate.....................E-9
E.1.16 Introduction..................E-11
E.1.17 Keyboard.....................E-11
E.1.18 Matrix -Ops...................E-12
E.1.19 ModeIChangeTimer................E-13
E.1.20 Model......................E-13
E.1.21 MsgEqual.....................E-14
E.1.22 MsgCmd_-Proc...................E-14
E.1.23 Noise..................... . E-15
E.1.24 PlotResults..................E-15
E.1.25 ProcessCMD_1 .................. E-16
E.1.26 ProcessCMD_2 .................. E-16
E.1.27 ProcessCHD_24.................E-17
E.1.28 Propagate.....................E-17
F.1.29 RandomNumber .................. E-18

V



E. 1.30 rem hdlr......................E-18
E.1. 3l test_1553.....................E-18
E.1.32 Trajectory...................E-19
E.1.33 Update.....................E-19
E.1.34 ValidMsg_Nui..................E-20
E.1.35 WriteData...................E-20

E.2 Commercially Developed Functions..............E-21
E.2.1 Essential Software C Utility Library ........ E-21
E.2.2 Ballard PC1553 Functions..............E-21

Appendix F: Simulation Operator's Guide ............... F-1
F.l System Requirements and Hardware .............. F-1
F.2 Simulation Setup......................F-2
F.3 Simulation Operation....................F-4
F.4 Summary..........................F-7

Appendix G: 23-State MC',dei Validation Results ............. G-1

Appendix 1-: Simulation Validation Results for Static Navigation .. H-1

Appendix I: Simulation Validation Results for Straight-and-Level
Trajectory....................... . . . ..... . . .. .. .. . ...

Appendix J: Error Behavior of Simulated Straight-and-Level
Traeectory...........................J-1

Bibliography............................BIB-l

Vita...............................VITA-l

vi



List of Figures

Figure 2.1 Litton ECEF and Navigation Reference Frames ....... .. 2-6

Figure 2.2 Navigation Reference Frames (t-true, p-platform, c-computer,

b-body) .,yS,, Tilt Errors, at and 4c Wander Angles ..... 2-7

Figure 2.3 Block Diagram of Vertical Channel Error Model . . .. 2-18

Figure 2.4 Information Transfer Formats ..... .............. 2-28

Figure 2.5 Broadcast Information Transfer Formats .. ........ .2-29

Figure 2.6 Mil Std 1553B Word Formats ..... .............. 2-29

Figure 3.1 INSLN94 Program Architecture .... ............. .3-5

Figure 4.1 Random Number Statistics ..... ............... .4-18

Figure 4.2 Noise Characteristics of State Four .... .......... .4-19

Figure C.1 Elements of Dynamic Sub-matrix F11. . . . . .  . . .. .. . . . . C-I

Figure C.2 Elements of Dynamics Sub-matrix F12 . . .  . . .. . .. . . .  C-2

Figure C.3 Elements of Dynamics Sub-matrix F13 ... .......... C-3

Figure C.4 Eleihnts of Dynamics Sub-matrix F14. . . .  . . .. . . . . . .  C-4

Figure C.5 Elements of Dynamics Sub-matrix F15 . . .  . . . . .. . . . .  C-5

Figure C.6 Elements of Dynamics Sh-matrix Fj5  C-6

Figure C.7 Elements of Dynamics Sub-matrix F22 . . .  . . . .. . . . . .  C-7

Figure C.8 Elements of Dynamics Sub-matrix F55 . . .  . . . . .. . . . .  C-8

Figure C9 Elements of Process Noise Matrix Q11 . .  . . . . . . . . . . . C-9

Figure C.10 Elements of Process Noise Matrix Q22 . .  . . . . . . . . . .. C-10

Figure D.1 Function MAIN Part 1 ..... ................. . D-2

Figure D.2 Function MAIN Part 2 ..... ................. . D-3

Figure D.3 Function MAIN PART 3 ..... ................. . D-4

vi



Figure D.4 Function MAIN Part 4.....................D-5

Figure D.5 Function PROPAGATE....................D-6

Figure D.6 Function INTEGRATE Part 1 .................. D-7

Figure D.7 Function INTEGRATE Part 2 ................ D-8

Figure D.8 Function INTEGRATE Part 3 .................. D-9

Figure G.1 Britting Results for North Gyro Drift. ......... G-1

Figure G.2 Britting Results for East Gyro Drift .............- 2

Figure G.3 Britting Results for Azimuth Gyro Drift ...........- 3

Figure G.4 61, for North Gyro Drift.....................-4

Figure G.5 61 for North Gyro Drift....................G-4

Figure G,6 Ox (fE) for North Gyro Drift...............G-5

Figure G.7 4O, (EN) for North Gyro Drift.................G-5

Figure G.8 O (-ED) for North Gyro Drift.................G-6

Figure GA9 61, for East Gyro Drift..................G-6

Figure 0.10 61 for East Gyro Drift..................G-7

Figuire Gi11 Ox ((E) for East Gyro Thrift...............G-7

Figure G.12 oy (cN) for East Gyro Drift..................-8

Figre .134~(-cD) for East Gyro Drift...............G8

Figure G.14 61, for Azimuth Gyro Drift ............. _

Figure G.15 61 for Azimuth Gyro Drift.................G-9

Figure G.16 0. (CE) for Azimuth Gyro Drift..............-10

Figure 0.17 Oy ((N) for Azimuth Gyro Drift................-10

Figure 0.18 01 (-ED) for Azimuth Gyro Drift.............-11

Figure 0.19 Britting Results for North Accelerometer Bias . . . . G-12

Figure 0.20 Britting Results for East Accelerometer Bias ........- 13

Fibure 0.21 ~L£.North AelrrntrBias ...............-14

viii



Figurf, G.22 61 for North Accelerometer Bias .... ........... G-14

F'igure G.23 0. () for North Accelerometer Bias ... ......... .G-15

Figure G.24 Oy ((N) for North Accelerometer Bias ... ......... .G-15

Figure G.25 07 (-ED) for North Accelerometer Bias ... ........ G-16

Figure G.26 6L for East Accelerometer Bias .... ............ .. G-16

Figure G.27 61 for East Accelerometer Bias .... ............ .. G-17

Figure G.28 0,, (SE) for East Accelerometer Bias ... ......... G-17

Figure G.29 Oy (c) for East Accelerometer Bias ............... G-18

Figuie G.30 Oz (-ED) for East Accelerometer Bias ... ......... .G-18

Figure H.1 Latitude for Simulation and INS-3 Hr Stationary

Navigation ............ ......................... H-1

Figure H.2 Longitude for Simulation and INS-3 Hr Static

Navigation .......... ......................... H-2

Figure H.3 AILftude from Simulation 3 Hr Static Navigation .... . H-2

Figure H.4 Wander Angle From Simulation and INS-3 Hr Static

Navigation .......... ......................... H-3

Figure H.5 X Velocity for Simulation and INS-3 Hr Static

Navigation .......... ......................... H-3

Figure H.6 Y Velocity for Simulation and INS-3 Hr Static

Navigation .......... ......................... H-4

Figure H.7 Z Velocity for Simulation and INS-3 Static Navigation H-4

Figure H.8 Platform Azimuth for Simulation and INS-3 Hr Static

Navigation .......... ......................... H-5

Figure H.9 Pitch for Simulation and INS-3 Hr Static Navigation . H-5

Figure H.l0 Roll for Simulation and INS-3 Hr Static Navigation . -A

Figure H.11 X Acceleration for INS-3 Hr Static Navigation .... H-6

ix



Figure H.12 Y Acceleration for INS-3 Hr Static Navigation . ... H-7

Figure I.1 Latitude of the Simulated and True Straight-and-Level

Trajectories ........... ........................ I-I

Figure 1.2 Longitude of the Simulated and True Straight-and-Level

Trajectories .......... ........................ 1-2

Figure 1.3 Altitude of the Simulated and True Straight-and-Level

Traiectories .......... ........................ 1-2

Figure 1.4 North Velocity of the Simulated and True Straight-and-

Level Trajectories ........ ..................... 1-3

Figure 1.5 East Velocity of the Simulated and True Straight-and-

Level Trajectories ........ ..................... 1-3

Figure 1.6 Vertical Velocity of the Simulated and True Straight-

and-Level Trajectories ....... ................... 1-4

Figure 1.7 North Acceleration of the Simulated and True Straight-

and-Level Trajectories ....... ................... 1-4

Figure 1.8 East Acceleration of the Simulated and True Straight-

and-Level Trajectories ......... ................... I-5

Figure 1.9 Vertical Acceleration of the Simulated and True

Straight-and-Level Trajectories ..... ............... . 1-5

Figure I.10 Wander Angle of the Simulated and True Straight-and-

Level Trajectories ........ ..................... 1-6

Figure 1.11 Roll of the Simulated and True Straight-ana-Level

Trajectories .......... ........................ 1-6

Figure 1.12 Pitch of the Simulated and True Straight-and-Level

Trajectories .......... ........................ 1-7

Figure 1.13 Platform Azimuch of the Simulated and True Straight-

x



and-Level Trajectories ....... ................... 1-7

Figure J.1 Latitude Error in the Simulated and True Straight-and-

Level Trajectories .......... ..................... J-1

Figure J.2 Longitude Error in the Simulated and True Straight-

and-Level Trajectorie.......... .................... J-2

Figure J.3 Altitude Error in the Simulated and True Straight-and-

Level Trajectories ........ ..................... J-2

Figure J.4 North Velocity Error in the Simulated and True

Straight-and- Level Trajectories ..... .............. J-3

Figure J.5 East Velocity Error in the Simulated and True

Straight-and- Level Trajectories ..... .............. J-3

Figure J.6 Vertical Velocity Error in the Simulated and True

Straight-and-Level Trajectories ..... ................ J-4

Figure J.7 North Acceleration Error in the Simulated and True

Straight- and-Level Trajectories ..... .............. J-4

Figure J.8 East Acceleration Error in the Simulated and True

Straight-and-Level Trajectories ..... ................ J-5

Figure J.9 Vertical Acceleration Error in the Simulated and True

Straight-and-Level Trajectories ..... ................ J-5

Figure J.10 Wander Angle Error in the Simulated and True

Straight-and- Level Trajectories ..... .............. J-6

Figure J.11 Roll Error in the Simulated and True Straight-and-

Level Trajectories ........ ..................... J-6

Figure J.12 Pitch Error in the Simulated and True Straight-and-

Level Trajectories ........ ..................... J-7

Figure J.13 Platform Azimuth Error in the Simulated and True

xi



Straight-and-Level Trajectories ................ J-7

xii



List of Tables

Table 1.1 Output Parameters ....... ................... 1-7

Table 2.1 WGS-84 Parameters ....... ................... 2-5

Table 2.2 Reduced Truth Model States ...... ............... .2-20

Table 3.1 States Stored to File ...... ................. 3-17

Table 3.2 Compiler Optimizations ...... ................. .3-20

Table 4.1 LN-94 Navigation Accuracy Limits ... .......... 4-7

Table 4.2 Initial State Vector ...... .................. . 4-9

Table 4.3 Navigation Parameters Collected for Comparison ...... .. 4-11

Table 4.4 Simulated Static Navigation--Summary of Maximum Error

Magnitudes .......... ......................... 4-12

Table 4.5 Simulated Straight-and-Level Trajectory--Summary of

Maximum Error Magnitudes ....... .................. 4-15

Table A.1 Command Word Specifications ..... .............. A-1

Table A.2 Response to Command Word #1 ..... .............. A-2

Table A.3 Response to Command Word #2 ..... .............. A-3

Table A.4 Response to Command Word #24 ..... .............. A-4

Table A.5 Roll and Pitch Word Formats ..... .............. A-5

Table A.6 True Heading and N-S Velocity Word Formats ........ .A-6

Table A.7 E-W and Vertical Velocity Word Formats .. ......... . A-7

Table A.8 Baro-Inertial Altitude and Time Tag Word Formats . . .. A-8

Table A.9 Present Position Latitude Word Format .. ......... . A-9

Table A.1O Present Position Longitude Word Format .. ........ .A-10

Table A.11 N-S and E-W Acceleration Word Formats ... ......... .A-11

xiii



Table A.12 Vertical Acceleration and Wander Angle Word Formats . . A-12

Table A.13 Platform Azimuth and INS Status Word Formats . ..... .. A-13

Table B.1 INS Truth Error Model Partition 6x . . . .  . . . . . .. . . .  B-1

Table B.2 INS Truth Error Model Partition 6x2 . . .  . . . .. . . . . .  B-2

Table B.3 INS Truth Error Model Partition 6x3 . . .  . . . . . .. . . .  B-3

Table B.4 INS Truth Error Model Partition 6x4 . . .  . . .. . .. . . .  B-4

Table B.5 INS Truth Error Model Partition 6x5. . . .  . . . .. . .. . .  B-5

Table B.6 INS Truth Error Model Partition 6x6 . . .  . . . .. . . . . .  B-5

Table E.1 Functions Contained in INSLN94.C ... ........... . E-2

Table E.2 Functions Contained in Object Modules .. ......... . E-2

Table F.1 File Names Used by EZPLOT ..... ............... F-7

xiv



Abstract

In recent years, simulation has become a very important tool in

education, research and development, and training. With the advent of

more complex and more rpensive navigation systems, simulation has

proven to be a cost-effective and reliable way to enhance the learning

environment.

This thesis develops a simulation that emulates a Litton LN-94

INS. Real-time simulation is achieved for a stationary navigation case

and a straight-and-level flight trajectory are provided to exercise the

simulation dynamics. The user interface is simple and requires little

previous knowledge to operate. The communication link with the MILSTD

1553B bus provides a realistic environment in which to collect and

analyze data.

The simulation is processed on an 80386 IBM compatible personal

computer. A 23-state INS error model is implemented and integration is

performed by a fifth-order Kutta-Merson routine. The simulation is

interfaced to a plotting routine and data collection, both data type and

rate, is controlled through the user interface. Simulation status and

output is viewed from the simulation screen or on the MILSTD 1553 bus

monitor.

The simulation is programmed in C programming language. Program

development is discussed and flow charts of the major modules provided.

The simulation validation process is outlined and results are presented.

xv



DEVELOPMENT OF A
PERSONAL COMPUTER SIMULATION PROGRAM

OF THE LN-94 INERTIAL NAVIGATION SYSTEM

I. Introduction

This thesis develops and implements a high fidelity LN-94 Inertial

Navigation System simulation program. The simulation emulates an LN-94

23-state truth model and operates under MS DOS on an IBM compatible 386

PC. The simulation is capable of two-way communication on a MILSTD

1553B communication bus, and data input and output is controlled by a

1553B bus controller. The simulation offers the user a number of

options in vehicle trajectory, state storage and plotting, and data

storage. Vehicle trajectory information is provided to the simulation

from an independent trajectory development program [15].

This chapter provides the reader with background information and

research goals are presented in detail. The research approach is

discussed and limitations in the scope of the research are indicated.

An overview of the remaining chapters of the thesis is presented at the

end of the chapter.

1.1 Background

The concept of simulation has proven to be a valuable aid in

research, development, testing, and training. With the advances in

computer technology, simulation becomes a more attractive approach since
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more complex problems can be simulated in real time and with increased

fidelity. In stride with these advances, avionics equipment has become

much more complex, more expensive, and requires specialized equipment to

support its operation. In addition, avionics equipment is difficult to

obtain and very expensive to repair.

A simulation developed to work in concert with actual components

can support education and research, resulting in an enhanced research

and education environment. Such a simulation must be capable of

operating with the same accuracy and exhibit the same operating

characteristics as the original equipment. The simulation must also be

capable of providing information to the user in the same format as that

which is provided by the actual INS.

A situation in which a simulation would be advantageous is the Air

Force Institute of Technology's Navigation Laboratory. This laboratory

environment has been established to provide hands-on experience and

research capability for graduate students analyzing the operation of

current navigation systems. Specifically, the laboratory operates a

Litton LN-94 ring laser gyro strapdown inertial navigation system (INS),

a Litton LN 39 gimballed INS, a Rockwell-Collins Phase liA Global

Positioning System (GPS) receiver, and several personal computer systems

to facilitate system operations [23]. All systems are coupled to a

MILSTD 1553B communication bus which is controlled by a PC-based

software package and interface card developed by Digital Technology Inc

[13].

The laboratory INS systems have been inoperable at various times

in the past, which has led to some delays in teaching and research.

1-2



This problem highlights the need for an alternative. A simulation that

can accurately emulate the operation of these systems is one solution.

A high fidelity simulation of the LN-94 INS, in this case, can provide

the necessary navigation information and performance as well as augment

the use of actual components.

1.2 Research Objectives

The overall objective of this thesis is to develop a high fidelity

PC-based simulation program emulating the performance of the LN-94 INS.

The program development begins with a simulation program developed by

Intermetrics Inc. of Huntington Beach CA [1]. This program is discussed

in some detail in Section 2.2 of Chapter 2. Using this program as a

starting point, the following sub-objectives are achieved in order to

meet the overall thesis objective:

1. Verify both the level of detail of the simulation and the

accuracy of the Intermetrics program.

2. Identify a truth model for the LN-94 errors, program the

model, and incorporate it into the simulation.

3. Select and program a high accuracy integration routine to

propagate the truth model states.

4. Program a validated random number generator to provide

simulated white Gaussian noise to the stochastic truth model.

5. Develop vehicle trajectory files to allow a number of

different scenarios for the simulation.

1-3



6. Ensure simulated LN-94 information provided to the 1553 data

bus is in the same format as the information provided by the

actual equipment.

7. Develop and implement a user interface to provide options in

trajectory, data storage, and plotting.

8. Validate the simulation to determine the level of fidelity.

1.3 Research Approach

As is noted in Chapter 2, Section 2.2, the Intermetrics simulation

in its original form is extremely limited as a simulation of true INS

functions. It is essentially a communications shell that simulates

Standard Navigation Unit (SNU) 84-1 INS message traffic based on the

MILSTD 1553B protocol [4,22]. Simulated navigation performance based on

spherical earth calculations with constant vehicle velocity and heading

is provided. This thesis improves the capability by incorporating a 23-

state LN-94 error model into the simulation. The model emulates the LN-

94 operating characteristics and the simulation produces MILSTD 1553B

formatted data. The simulation is validated using a number of

trajectory profiles.

As clarification, the SNU 84-1 is a USAF document which issues

design guidelines for an inertial navigation system based on standard

form, fit, and function. The LN specification is a designator for

Litton developed systems.

A 23-state LN-94 error model is used in an effort to minimize the

computation overhead and at the same time achieve sufficient accuracy in

the simulation. Two other alternatives werp considered but deemed

1-4



unsuitable. Those included use of the full 93-state model and a 39-

state model. This particular version of the LN-94 model is provided as

a result of research done at AFIT by Stacey [26]. This makes the

simulation dedicated to an LN-94 implementation. However, the modular

nature of the program makes changing the truth model for simulating

another INS a fairly simple programming task.

Numerical integration of the error model equations simulates the

LN-94 error values as a function of time. Numerical accuracy is

important as error values are very small, particularly early in the

navigation cycle. To achieve the necessary computation accuracy, the

integration routine chosen is a fifth-order routine. Double precision

programming techniques are used in the integration routine.

By using the data available in Britting [8] and in the Litton

Consolidated Data Requirements List (CDRL) [17], the nine basic

navigation error states: three position errors, three tilt errors, and

three velocity errors, can be compared for determining the simulation's

accuracy. In addition, a comparison with the actual INS in static

navigation is used as a measure of fidelity. The simulated results must

agree in magnitude and modal character with the actual INS data,

demonstrating that the error model and integration routine are valid.

Trajectory data provide the simulation with the true path of the

INS. The INS truth model represents the error behavior of the INS. If

the errors are summed with the trajectory information, the result is the

simulated navigation solution provided by the INS.

The simulated INS information is processed to provide real-time

vehicle information. Program computation time plays a critical role in
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achieving real-time processing. Care is taken to optimize computation

to achieve this goal.

Limiting the simulation to one trajectory would severely reduce

the functionality of the simulation, so a woce generalized approach is

taken. To exercise the simulation, three trajectories are provided.

These trajectories provide sufficient evaluation of the simulation and

allow different vehicle operating environments. The flight trajectories

are provided in the form of files on the host computer hard disk and are

selectable from the user keyboard. The static navigation is coded into

the program. The three trajectories are:

1. Static navigation

2. Straight and level with constant velocity from a predetermined

initial position and heading

3. An air-to-ground fighter profile as described in the Litton

CDRL [17].

A hybrid program of PROFGEN [2] known as INERCA [15] is used to generate

the trajectory information. INERCA is selected based on its user

interface.

The LN-94 specification that dictates the communication protocol

is the Fighter Navigation Unit (FNU) 85-1 Specification [3]. To

simulate the LN-94 properly, the information provided by the simulation

to the 1553B communication bus must satisfy this specification. The

I itermetrics simulation follows the SNU 84-1 specification. The

approach here is to change the input and output specification to produce

LN-94 type information in accordance with FNU 85-1.
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The simulation input consists of present position latitude and

longitude. The simulation output is limited to the parameters listed in

Table 1.1. The simulation data is formatted as per Appendix A for use

on the 1553B bus.

Table 1.1 Output Parameters

Parameter Output
I (FNU 85-1 Table IV)

pitch 7
roll 8

N-S velocity 10
E-W velocity 11

vertical velocity 12
inertial altitude 13
present pos lat 14
present pos long 15
platform azimuth 104
wander angle 36

N-S acceleration 16
E-W acceleration 17

vertical acceleration 18
pitch rate (body) 33
roll rate (body) 34
yaw rate (body) 35

The user interface for any program is critically important as it

normally dictates the acceptance of a program and the extent to which it

is used. For tL.s interface, a question and answer approach is used to

interrogate the user. The user keys in the appropriate responses from

the keyboard. All options are selected prior to executing the

simulation. After the simulation starts, the user may communicate with

the simulation by keyboard or 1553B bus commands.
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To assist the user in getting the most information out of the

simulation, the following options are programmed into the simulation:

1. type of trajectory to use

2. whether data collection is required

3. time interval between collection points

4. what data to collect (ie., which states to monitor)

5. duration of simulation

The validation approach for the overall simulation is based upon

the accuracy criteria contained in FNU 85-1. By comparison of the

trajectory data with the data that is provided by the simulated INS, the

performance of the simulation should not exceed maximum allowable

limits. Alignment is not a variable condition of this simulation, so

the four minute normal gyrocompass alignment criterion shall be used.

Fidelity of the simulation is measured by the ability to achieve these

conditions. Exact details on the procedures for fidelity measurement

are provided in Chapter 4, Section 4.2.1.

1.4 Thesis Over-view

Including this introductory chapter, this thesis is comprised of

five chapters and ten appendices. Chapter 2 introduces the theory that

is necessary to develop the simulation program. Chapter 3 provides

insight into the approaches taken in developing the simulation from a

programming point of view. Chapter 4 outlines the validation process of

the simulation. This includes validation of the 23-state model and

comparison of the simulation performance with actual INS data. The

final chapter restates the major objectives of the thesis and summarizes
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to what degree the goals have been met. Validation results are

summarized and recommendations and comments for future development aze

provided.

The appendices provide supporting figures and tables, a

description of program functions, validation results, and a user's guide

for the simulation. Appendices are listed as follows:

Appendix A: FNU 85-1 Word Formats

Appendix B: LN-94 Truth Model Definition

Appendix C: LN-94 Dynamics and Noise Matrices

Appendix D: Programming Flow Charts

Appendix E: Program Functions

Appendix F: Simulation Operator's Manual

Appendix G: Reduced Order Model Validation Results

Appendix H: Simulation Validation Results for Static Navigation

Appendix I: Simulation Validation Results for Straight and Level

Trajectory

Appendix J: Error Behavior of Simulated Straight and Level

Trajectory
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II. Theory

As discussed in the Chapter 1, the primary objective of this

thesis is to develop a high fidelity simulation of an LN-94 INS. The

objectives have been presented and the research approach has been

outlined. This chapter reviews the theory that is required to develop

the simulation.

Of narticular importance to this research is a discussion of the

theory necessary to understand the operation of the LN-94, its error

model, and the propagation techniques used. An outline of MILSTD 1553B

principles and a discussion of applicable hardware are included. The

chapter concludes with a summary of the software necessary to conduct

this research and to execute the simulation.

2.1 LN-94 Inertial Navigation System

The INS for this research is the Litton Systems LN-94. As a

matter of procedure, the term LN-94 will be used through out this theory

chapter and the remainder of the document. This is noted as confusion

may arise from the fact that the Litton CDRL refers to an LN-93.

Operationally the two configurations are identical. The different

designation lies in the fact that the LN-94 is an LN-93 that is

physically reconfigured for use in the F-15.

The LN-94 is a strapdown inertial system using three single-

degree-of-freedom accelerometers and three ring laser gyroscopic

sensors. Strapdown refers to the concept that there is no moving gimbal

2-1



structure. There is no angular motion of components with respect to the

vehicle, and the body frame represents the mechanization frame.

As is implied by the last statement, the INS implements its

operation in terms of reference frames. The LN-94 frames are the

accelerometer a-frame, gyro g-frame, the sensor s-frame, the body b-

frame, the platform p-frame, the computer c-frame, and the true t-frame.

For this implementation, the body frame, the sensor frame, and the

platform frame are the same. The computer frame is the frame in which

the INS computations are done and the true frame represents the actual

navigation frame.

To highlight the relationship of these frames to each other a look

at the transformation equations is appropriate. All INS data is

computed in the computer frame and represents the INS-indicated values.

To transform gyro and accelerometer data into the true frame the

following transformations are used:

and

c c' c: (2)

where C is the direction cosine matrix transforming vectors from the

lower subscript frame to the upper subscript frame.

Since the sensitive axes of both gyros and accelerometers is

nominally aligned with the body axes, except for uncalibrated

installation errors, then it must be assumed that the body sensor

transformation is equal to identity. All transformations from the

sensor frame to the true frame can then be achieved using the body-to-
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true-frame transformation. Refer to Section 2.1.1 for a description of

the different coordinate frames.

The system is not without errors. These errors are represented by

misalignments between frames. The true frame is offset from the

computer frame by an error vector, 60, which represents the computation

errors and the uncertainties of the INS. These errors propagate

themselves in the form of latitude, longitude, and wander angle errors.

The true frame is also offset from the platform frame. This offset

represents the physical misalignment in the gyros and accelerometers

when they are mounted to the INS.

The accelerometers provide specific force measurements experienced

by the INS and the gyros provide attitude rate measurements due to body

and earth rotations. Accelerometer and gyro triads provide these

measurements in each of the three sensitive axes. This information is

used to determine position, velocity, and attitude of the INS. A

digital computer monitors the vehicle attitude based on gyro

information. From this information the computer can then provide the

transformation necessary to transform the specific force measurements

into the computation frame [8]. As mentioned previously, the computer

then computes the transformation into the true frame and useful

navigation information is provided.

The LN-94 is defined as a local level wander azimuth mechanization

[16]. This means that the vertical axis is uncommanded [8]. Only

level axes are commanded and the wander angle represents the angle about

the vertical axis between north and the wander azimuth y-axis. By

monitoring this angle, tue INS will always know the platform attitude
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but the reference frames will be skewed by the wander angle. Since the

LN-94 is a strapdown INS, commanding the level axes is a software

function. This implementation is particularly useful in the polar

regions as the vertical axis is insensitive to azimuth gyro torquing

uncertainties.

2.1.1 Reference Frames. The navigation solution is normally

expressed in terms of latitude, longitude, and altitude; better known as

geographical coordinates or simply map coordinates. In any navigation

system it is often more useful to relate this information to the earth-

centered earth-fixed reference frame (ECEF). To use this frame

accurately, knowledge of the earth's physical structure and shape must

be known precisely. A number of earth models have been utilized but the

most accurate to date is based upon the World Geodetic System 1984 (WGS-

84). The system models the earth as an oblate spheroid defined by the

terms in Table 2.1 [12]. The system defines the ECEF frame as follows:

x.- lies in the equatorial plane and intersects the Greenwich

Meridian

y.- lies in the equatorial plane and rotated east, orthogonal to

the z. axis

ze- coincident to the earths rotational axis and pointing north in

the standard right-hand orthogonal

The ECEF frame is only one of the frames used to develop an INS

navigation solution. The INS utilizes other frames such as the wander

azimuth frame (in the case of the LN-94) and the body frame. To

understand the wander azimuth concept and other pertinent frames, a

summary of the system reference frames follows:
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Table 2.1 WGS-84 Parameters

Parameter Definition Value

Wij Angular rate of Earth 7.292115e-5 s-1

a Semi-major Axis 6378137 m
(Equatorial Radius)

b Semi-minor Axis 6356752.3142 m
(Polar Radius)

e First 0.0818191908426
Eccentricity

f Flattening 0.00335281066474
(Ellipticity)

go Equatorial Acceleration 9.7803267714 ms-2

of Gravity 32.087686258 fs-2

1. Earth Centered Earth Fixed (ECEF)- The ECEF e-frame of the LN-

94 is different from the standard WGS-84 convention. The Litton

ECEF frame shown in Figure 2.1, has its origin at the center of

the earth with the z, axis at the intersection of the equatorial

plane on the Greenwich meridian and the y. axis aligned with the

north pole. The x. axis is orthogonal to this plane and

intersecting the equator.

2. Navigation Frame- The navigation n-frame is oriented in an

East, North, Up (ENU) convention with the U axis pointing in the

direction of the local vertical as shown in Figure 2.1.

3. True Frame- This t-frame represents the actual latitude and

longitude of the INS. The true frame is rotated about the U axis

in a counterclockwise direction at an angle, a, referred to as the

wander angle. When this angle is zero the navigation frame and

the true frame are coincident in the [x,y,z]t - [E,N,U]t
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Figure 2.1 Litton ECEF and Navigation Reference Frames

convention. For this application the wander angle will generally

not be zero. Refer bark to Section 2.1 for details on wander

angle mechanization. In the FNU 85-1 specification, reference is

made to the wander azimuth frame while in the Litton

documentation, reference is made to the true frame. These frames

are the same.

4. Platform Frame- The platform p-frame is coincident with the

true frame in an errorless system. Typically, however, the frames

are misaligned by small attitude angles. This three dimensional

misalignment is represented by 0., 0., and 0, as shown in

Figure 2.2 [17]. Refer to Section 2.1.2 for tne matrix definition
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of these angles. The misalignments indicated above are actually

representative of the physical misalignments of the components as

experienced by the true frame when transformed from the gyro and

accelerometer frames.

5. Computer Frame- The computer c-frame represent latitude and

longitude as indicated by the INS. As in the other frames, when

the wander angle is zero, this frame is coincident with the

navigation frame as shown in Figure 2.2. As discussed previously,

the values computed by this frame differ from the quantities in
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the true frame because of computational and physical

uncertainties.

6. Body Frame- The body b-frame, Figure 2.2, is a function of the

orientation of the vehicle containing the INS. For an aircraft

application, the Xb axis is parallel to the fuselage in the

direction of vehicle nose. The Yb axis is parallel to the right

wing and positive in that direction. The Zb axis is positive out

the bottom of the fuselage to form an orthogonal right-hand

convention frame [3].

2.1.2 Coordinate Transformations. One of the key principles of

inertial navigation is the transformation of vectors from one reference

frame to another. One means of doing this is using the direction cosine

matrix (DCM). Section 2.1 discusses a number of these transformations

and the following is a definition of these and some of the other

applicable transformations. Note that rhe true frame convention rather

than wander azimuth frame convention is being used to make this overview

of the error model more compatible with the discussion in the Litton

document [17].

For the ECEF and the true frames [3]:

.(3)

cosAcosa-sinLsinAsina -(cosAsina+sinLsinAcosa) sinAcosL

c= cosLsina cosLcosa sinL (4)

(sin)cosa+cos)sinLsina) sinlsina-cossinLcosa cosAcosL]

where:
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A - terrestrial longitude

L - geodetic latitude

a - wander angle

For the ECEF and navigation frame [3]:

x. (5)

[cosA -sinAsinL sinAcosLi

C: 0 cosL sinL (6)

-sinA -cosAsinL cosAcosL

where:

A - terrestrial longitude
L - geodetic latitude

For navigation and true frames:

= t [(7)

where:

"osa -sinr 0
sin= Cosa 0 (8)

0 0 1

Note that the only misalignment between the navigation and true frames

is the wander angle, a.

For the true and body frames [3]:

SCt Y(9)
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cos0sino cos~coso sin 1
Ct= insinsin+cosqcoso sin~sinfcos4-cososino -sinocosO (10)

1cososin~sino-sinocoso cososin~coso+sinocoso -cosocos8

where:

- roll
8 - pitch

0 - platform azimuth

Since the sensitive axes of both the gyros and the accelerometers are

considered to represent the body axis of the vehicle for a strapdown

mechanization, the transformation from the sensor frame to the

navigation frame is represented by the body-to-true-frame transformation

matrix [3].

In the case of the platform and the true frames, recall that the

only difference is a small attitude error where 0 is a skew-symmetric

matrix representing the small misalignment. In this case the

transformation is [17]:

[:I YijET= ['+ ~ (11)

where:

0 _O1
- - 0 0. (12)

LY -0. 0

2.1.3 LM-94 Error Model. This section presents a brief

discussion of the LN-94 error model and identifies the system states

used in this thesis. The reader is referred to the Litton CDRL [17] and
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to Hirning [14] and Stacey [26] for a more rigorous analysis of the

model.

The INS error states change much more slowly than the system

navigation states for an INS in a dynamic environment. Consequently, a

longer sampling rate can be used and the computational load is minimized

because these error states can be linearized. In addition, slower

changing states allow for simplification of some of the propagation

equations and again assist in reducing computational loading.

The linearized INS error state equation is of the form:

6i(t) - F(t)6x(r) + G(r)v(t) (13)

where:

F(t)=aF(x'u(t) ,t] (14)ax

6x(t) is a time-varying state error vector, F(t) is a time-varying

system dynamics matrix, v is a white noise vector with G-I, and xn is

the nominal value of x in the linearization process.

The LN-94 error model presented in Litton's CDRL has a 93-state

error vector. 6x is partitioned into six smaller error vectors for

convenience of analysis. The vectors are defined as follows:

6X 6X T 6X 64 6XT 64T 6X]T (15)

where:

6x, represents position, velocity, attitude, and
vertical channel errors (13 states).

6x2 represents gyro, accelerometer, and barometer
correlated errors (16 states).

2-11



6x3 represents gyro bias errors (18 states).
6x4 represents accelerometer bias and barometer bias

errors (22 states).
6x5 represents accelerometer and gyro initial thermal

transients (6 states).
6X6 represents the gyro compliance errors (18 states).

Definition of each of the 93 states is found in Appendix B. In state

space matrix form, Equation (13) is explicitly represented by the

following equation [17]:

6k1  "F1 1 F2 F13 F14 F15 F,6  6x V
6X21 0 F2 0 0 0 0 6x2  V2

6i 3  0 0 0 0 0 0 6x3  0 (16)

6i4  0 0 0 0 0 0 6x4  0

6si5  0 0 0 0 F55 0 6x5  0

6Si 0 0 0 0 0 0 6x 6  0

The dynamics matrix, F, consisting of eight non-zero sub-matrices,

represents the homogeneous dynamics of the system. In this case, the

dynamic matrix is a linearized, time-varying, 93x93 matrix. The reader

is referred to Appendix C for the definition of the full dynamics

matrix.

The driving noise vector, Gw, is a Gaussian white noise function

of the form [17]:

Gw = [VT w 0 0 0 o]T (17)

The autocorrelation kernel functions associated with the two white

noise matrices are [18]:

E(w1 (t)v1 (t + T)) - Q11 (t)6(t - 7) (18)
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E(w 2 (t)wT(t+r)} Q2(t)6(t - r) (19)

where 6(t-7) is the dirac delta function and Q 11 and Q22 represent the

white noise strengths. The form of the Q matrix is [17]:

Q11 0 0 0 0 0

0 Q22 0 0 0 0

0 0 0000 (20)

0 00000

0 00000

0 00000

The definition of the 93-state model Q matrix is found in Appendix C.

Computationally, this is a very large truth model. Ideally, if a

model could be developed with fewer error states and essentially the

same performance, the job of propagating this model would be much less

tasking. Research to establish an effective reduced order truth model

has indicated that a model on the order of 23 states is acceptable for

the same analysis and applications [23,27]. The most significant

partition is 6xi which contains the basic nine error states defined in

Britting [8] and the necessary baro-aiding error states. The addition

of the first ten states of 6X2 accounts for gyro drift, accelerometer

induced errors, gravity vector errors, and the barometric noise error.

This model, adjusted with appropriate noise strengths, performs well

compared to the Litton documentation [17,27].

This 23-state error model is of the same form as the 93-state

error model. The position error differential equations are:

6e - -PYe, - cRvY (21)
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66y PX60Z * CRX6V (22)

66 6 =py60 - p"60y (23)

60,,yz are components of 66 which define the misalignment from the true

frame to the computer frame. The craft rate, p, defined as the angular

rate of the navigation reference frame with respect to earth, has the

following components:

P= -VyCRY (24)

py = V.CR (25)

0Z= 0 (26)

The components of earth spheroid inverse radii of curvature are:

C, -= [1 l-P---f (C'C (2,"3) - 2C=t(2,"l)2)] (27)
aa

CRY= I[ 1_- -f (Ce t(2,3)2 -2C.t(2,2)2) (28)a

where the equatorial radius, a, and the earth's ellipticity, f, are

defined in Table 2.1. Vehicle altitude corresponds to the term h.

Vx,,y, are components of the vehicle velocity with respect to earth

coordinates, and 6V,, 2 are errors in the computed velocity with respect

to the true velocity.

The platform tilt differential equations are:

Ox= - - 0 + %60z + wOy - wyO, - CRy6VY + bc + ,lb, (29)

2-14



y = Mzx - n.6ez - 'OZO + x~ z + CR6V. + by+ + 'b (30)

=Q60 + CI6Y+ WyOx - wxY+ b., + (31)

where the earth sidereal rate, 0, more often referred to as i., is

compi-ted as follows:

W= * Vi.A C~(22 (32)Wiz tUi*~ (2,3)

and the angular rate of the navigation frame with respect to inertial

space, rcferred to as spatial rate is defined as follows:

WX - P. + Ox (33)

Wy = Py + C (34)

Wz = PZ + Oz (35)

The variables b(x,Y,z) are components of the gyro correlated drift

and n is a white noise component of the applicable subscript, in this

case, gyro white noise.

The velocity differential equations are discussed in terms of

level velocity for two dimensional problems, or level and vertical

velocity for three dimensional problems. The level velocity

differential equations are:
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6v x = -2(V,y + V,=)6e x + 2VyXi68y + 2V.0.60

- A.Oy + Ayz - V.Cx6V. + 20,6VY (36)

- (py + 20y)6V + 6gx + 17.

6V y 2V.FIY6e 1 - 2 (VA + V.f2) 6e 8, 2TCI,6B,

+ 4O - A.4 - 20,V. - V.CRy6Vy (37)

+ (p, + 2n,)6Vz + 6gy + r/'

The variables 6g,, 2 are component errors in the gravity vector and

Ax,y,z are components of specific force.

Vertical velocity is a more complex problem, given that the model

must account for vehicle acceleration as well as gravitational

acceleration. The introduction of vertical channel gains, kj, k2, k3,

and k4 to the model (Equations (47) to (50)) plus the more complex

effects of the earth's physical shape, contribute to this complexity.

Vertical channel differential equations are defined as follows:

6t1 =VOz + 2vY2z6eY - 2(VYQ2Y + V~)8

-Ayx + AxOy + (py + 2QY + VxCRX)6V (38)

- (p, + 20x - VYCRy) 6 Vy + (2go/a)6h

+ k2 6h, - kz6hL + k26S 4 - 6 S3 + 6gz + 17AZ

6h = 6Vz - kj6hL + (kl- I ) 6 S 4 + kj6h, (39)

6k - 6h - 61k (40)

68 3 = k36hL - k3 6S 4 - k 3 6hr (41)
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6S 4 = (k,-1)6S4  k,6hL - kA6 k (42)

6h, = (-66h,) 6hC (43)

6 - 6h ,6hr - 6N (44)

where:

6h is error in vehicle altitude
6 hL is error in lagged inertial altitude
6hC is barometer correlated bias noise error
6S3 is error in vertical aiding
6S4 is error in vertical aiding
6hB is barometric altitude error
06h, is baro inverse correlation time

The reader is referred to Figure 2.3 for further clarification of the

vertical channel equations.

Specific force measurements are not a part of the model. Specific

force information is obtained from the following transformation:

t b (45)

Measurements for the simulation are provided by trajectory data.

The vertical channel gains are calculated based on the following

equations:

A - 100 [i+ A (46)
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Figure 2.3 Block Diagram of Vertical Channel Error Model [17I]

k..= 3  (47)

k2 w L9. + (48)
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k3 2 (49)71

k4 - 62  (50)
A0+ A2

where:

A . lIhb - IV (51)

30 fps initially

AO +8 if Ao <A (52)

A 0
AO -8 if AO >A and Ao >38

30 fps otherwise

A summary of the error states as represented in their respective

differential equations is defined in Table 2.2.

2.1.4 Error Model Propagation. The model is defined by the

previous section and it now remains to discuss the method used to

propagate the model and produce the information necessary for the

simulation.

The goal of the simulation is to produce INS-indicated information

to the simulation user. As mentioned previously, an INS is not error-

free. True trajectory is defined as:

true trajectory - INS indicated - INS error (53)

and the INS indicated value is represented as:
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Table 2.2 Reduced Truth Model States

State Number Symbol J Error Definition

1,2,3 6 Gx, 6 9 y, 6 0
,  X,Y,Z Position

4,5,6 OXOYOZ X,Y,Z Platform Tilt

7,8,9 6V1 , 6VY, 6V2  X,Y,Z Velocity

10 6h Altitude

11 6hL Lagged Inertial
Altitude

12,13 6 S3,6S 4  Vertical Aiding

14,15,16 bxcbycpbzc Gyro Correlated
Drift

17,18,19 VX, VYCVzc Accelerometer and
Velocity Correlation

Noise

20,21,22 6gx,6gY,6g z  Gravity

23 6hc  Baro Correlated
Bias Noise

INS indicated = true trajectory + INS error (54)

The object of the error model propagation is to integrate the model

forward in time, and when coupled with the trajectory information at the

end of the applicable interval time, to simulate the INS-indicated

values as defined in Equations (53) and (54). Specifically, the INS-

indicated position is defined as:

I i+a * (55)
[h,j h +.hJ

where:
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6L - 60ysina - 6excosa (56)

6A - (68ycosa + 6&xsir)secL (57)

6h - 6h (58)

and the wander angle error equation is defined as:

6a - 602 - 6AsinL (59)

It should be noted that Equations (56) through (59) are only valid when

not operating in the polar regions. The equations which define polar

region behavior are very complex and are not considered in this

analysis. This exclusion prevents the simulation of the INS in the

polar regions although future implementation is an option.

To propagate the model it is important to consider the mod-1 in

its generalized matrix differential equation form:

6i(t) - F(t)6x(t) + G(t)w(t) (60)

To deal with this model in a digital computer environment, the discrete

form of Equation (60) is used. The solution of Equation (60) is [18]:

6X(ti.1) - 'D (ti.1' ti)Wt~i) + [f i 11@ (tj.l,-)G(r)dfi(,) (61)

which in turn can be written as a discrete linear stochastic difference

equation [18]:
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6x(tj.1 ) = 0 (tj. 1 , t)6x(ti) + Wd(ti) (62)

The subscrIPL "* indicates a discrete time definition and the value wd

takes on the corresponding bracketed value from Equation (61) where wd

is the hypothetical derivative of the Brownian motion,f. The matrix,

'(t,tj), is the state transition matrix associated with the matrix

F(ti). It should be noted that Equations (60) through (62), in their

most general form, would normally have a deterministic input term Bu(t).

The simulation will not use any deterministic inputs, as they are not

included in the model.

From this definition it can be seen that a solution to the INS

truth model is possible by the evaluation of each term over a given

computation interval. The main disadvantage of this approach is the

computational burden of the evaluation of (ti 1,r).

An alternate approach is to integrate the first term of Equation

(60) and treat the noise term separately. The dynamics of 4, in its

linearized error state form, are slow enough that it can be assumed

that, for the integration interval, 4 is constant. Taking advantage of

this characteristic, by utilizing a numerical integration routine, and

adding random noise vd as in Equation (62) at the end of each

computation interval, propagation of the model can be achieved.

The integration routine selected to propagate these equations must

be both efficient and accurate. The fourth-order Runge-Kutta

integration routine is considered to be a very capable integration

routine. It can however, suffer from accuracy problems and does not

have the efficiency to handle high speed computations accurately [24).
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In discussion with Maybeck and after reviewing the techniques used in

MSOFE, the technique chosen for this application is the Kutta-Merson

tachnique [9.10,191.

The Kutta-Merson routine was evaluated against a number of other

well known techniques to establish the best method for integrating

trajectory type problems. The Kutta-Merson method proved to excel at

handling trajectory driven systems such as the one in this thesis [7].

The Kutta-Merson equations are as follows:

71 Yo + lh * f(xo,y o) (63)

y2 = Yo + 1 * f(xo,yo) + h * f(x, + .h,y 1 ) (64)

Y 3 Y +  h * f(xyo) + h * f 1(Xo + h, yl) (65)

where h is defined as the step size and y, is the solution of the system

equation at to plus a step segment of h. The result of these equations

is that the system is propagated from y(t0 ) to y(t0+h).

The technique is fifth order and incorporates automatic step

control to optimize the integration. From the equations, the technique

has two estimates of the solution at the end of the step, Y4 and y5.

These two estimates are used to evaluate step size validity and the step

is adjusted to keep the error within the designated error tolerance.
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The mechanics of this technique are discussed in detail in Chapter 3,

Section 3.3.1.

The apprn-ch that .z ..... " scd to simulate the noise tei-m

Wd is to generate random noise in the form of the output of a random

number generator with statistics N[O,Qd]. For a discrete case, the

statistics of wd can be defined as [11:

E(Wd(ti)) - 0

E~wd(ti)vd(ti)) -, 4,(t) (68)

The quantity Qd can he approximated by:

Qd(ti-l) = G(ti)Q(tj)GT(ti)At (69)

As mentioned earlier, the slow dynamics of F(t) allows for the

assumption that the dynamics are zero over the integration interval and

therefore validates Equation (69) as an approximation to Qd-

To achieve the necessary statistics for Vd, the numbers associated

with the number generator must be translated into statistics N[O,Qd].

This is normally achieved by taking advantage of a matrix square root

algorithm such as the Cholesky square root [181. Given a vector z of

random number with statistics N[0,I], the necessary random noise can be

achieved by Equation (70) [19].

Vd - V z (70)

In this thesis, however, Q in Equation (69), is diagonal and the

square root algorithm is not necessary. Using the approximation of
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Equation (69) to develop Qd and since G - I , Qd - QAt. From this, the

value of white noise is equated as:

Wd = QAtz (71)

2.2 Intermetrics INS Simulation Program

The Intermetrics program was developed to operate in the T-39

Simulation facility at Intermecrics Inc. The facility is developed

based on standard form, fit, and function philosophy and is used to

evaluate the components of navigation systems, specifically GPS at this

time [6].

The program is a communication shell simulating INS message

traffic based on the SNU 84-1 [4] and the MILSTD 1553B communication

protocol [22]. Navigation simulation is limited to a constant heading

and constant velocity vehicle trajectory about a spherical earth.

Position about the sphere is resolved trigonometrically based on

velocity and heading. No compensation is made for the "real" earth

shape or for conditions such as the Coriolis effect and gravity. No

consideration for navigation of a vehicle under acceleration is

provided. Modelling and computation of INS errors are nonexistent.

The program is PC-based and written in C programming language.

Some of the routines are also written in assembly language. It utilizes

the PC1553-2 Ballard board [5] to interface to the 1553B bus. The

simulation provides the capability to input two words, D01 and C01 of

SNU 84-1, and read the output words 101, 106, 107, and 113. D01 is a

generalized input to the INU from the control display unit and C01 is

input from the CADC to the INU. 101 outputs the INU state vector, 106
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and 107 provided output to the HSI/HUD/DISPLYS, and 113 is an output

initialization vector. The reader should refer to the SNU 84-1

specification [4] for details on the content of these words.

The program provides a display that indicates the simulation run-

time, the INS mode, and the information contained in one of the input

words and one of the output words. The displayed words are selectable

from the keyboard. Present latitude and longitude are displayed and

changed as the simulation progresses.

The program must read a data file which contains the velocity and

heading of the vehicle in order to initiate the simulation in navigation

mode. Velocity and heading are constant and only one input can be made

per simulation cycle. The simulation has OFF, STANDBY, AIR ALIGN,

STORED HEADING ALIGN, GYROCOMPASS ALIGN, OVERFLY, AUXILIARY, ORIENT,

ATTITUDE, TEST, CALIBRATE, and NAV modes. Modes other than NAV are

completed on a timing cycle and the appropriate bits are set in the

output words. NAV mode is updated by the simple navigation technique

mentioned previously. The simulation also has waypoint/markpoint

capability. No emphasis is placed on this particular capability at this

time.

The simulation acts as a remote terminal on the 1553B bus and the

communication protocol is in the form of remote terminal to bus

controller or bus controller to remote terminal transfers. MILSTD 1553B

protocol is discussed in some detail in the next section. User

interface with the simulation is through the terminal keyboard and

through the bus controller. Once the simulation is started, all further

communications is achieved through the 1553B data bus.
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2.3 MILSTD 1553B Data Bus

MILSTD 1553 is a document which establishes a military standard

for a communication system known as an Aircraft Internal Time Division

Command/Response Multiplex Data Bus [22]. It is a 1 Mbps serial bus

system which achieves avionics and stores management integration within

an aircraft system. The standard provides methods of communication and

the electrical interface for sub-systems connected to the data bus.

The key components of the system are the bus controller (BM),

remote terminal (RT), bus monitor (BM), twisted shielded pair wire data

bus, and coupling transformers. The bus controller, as its name

implies, provides "absolute" control over transmission flow on the bus.

It controls all communications on the bus and utilizes a command and

response protocol method to communicate across the bus. The controller

uses this method to control the system remote terminals, thereby

controlling up to 32 sub-systems.

The remote terminal may be represented in two forms, the stand-

alone concept, and the embedded concept. In the stand-alone concept,

the RT is solely dedicated to the bus. Its only function is to

communicate with the bus. It provides the interface between the

controller and bus and a non-1553 system. System design may permit a

stand-alone RT to also act as a bus controller. Note that a bus can

only have one bus controller at a time.

In the embedded concept, the RT consists of interface circuitry

embedded in the sensor or sub-system. It performs the data transfer in

and out of the sensor but generally does not have controller capability.
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This configuration is the typical approach in most Air Force equipment

and is the case for the LN-94 INS.

The bus monitor monitors all messages and collects data for mass

storage or remote telemetry. It may also serve as a back-up controller

while observing the system state and operational mode.

The bus itself is composed of a twisted shielded pair wire which

is coupled to the RT's and the bus controller by a bus coupler. The

coupler provides isolation between the bus and the terminals either by

direct coupling or transformer coupling.
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Figure 2.4 Information Transfer Formats

1553 protocol consists of 10 message types as shown in Figures 2.4

and 2.5. Within each message there are control words called command and

status. Messages also contain data words which provide the necessary

data to communicate on the bus. The messages are divided into two

formats; information transfer formats and broadcast information transfer

formats. The controller uses information formats to address individuai
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RT's, while broadcast messages address the entire bus or segments

thereof.
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In the information transfer format, each valid message sent must

be acknowledged by an RT status wc i; hence, the co.mand/response
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protocol. Each word is 20 bits in length and consists of 3 synch bits,

16 data bits, and I parity bit. Details of the word structure are shown

in Figure 2.6.

The command word can only be generated by a bus controller and

provides to the RT the necessary information about the message to be

transmitted. The command word address is the address of the RT that is

to be controlled. The command word may be followed by another command

word, by a data word(s), or a wait time to allow the RT to respond with

a status word.

The status word, the response portion of the protocol, is utilized

by the RT to inform the bus controller that a valid reception or

transmission has taken place. Conversely, the bus controller utilizes

the status word to monitor the health of RT's and the system as a whole.

The RT sets bit flags in the status word which are then interpreted by

the bus controller.

TransLuission flow may be bus controller to RT, RT to bus

controller, RT to RT, or as in the case of broadcast messages, bus

controller to a number of RT's. Again, all transmissions are controlled

by the controller using command words to address RT's and command

functions.

As mentioned in Section 2.2, the INS simulation is an RT and in

this case the address is 05. The bus controller is emulated by a DTI

1120 board [13] in another PC (see next section). The applicable words

and formats for the 1553B bus for use in the simulation are provided in

Appendix A.
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2.4 Hardware

The simulation is written to operate under MS DOS using an Intel

80286 or 80386 processor. This particular installation is a 386-based

33 Mhz PC. The PC also has a Cybex 80C387 math co-processor to assist

in the computational loading on the main processor. Data storage is

provided in the form of a 120 Mbyte hard disk and a 1.2 Mbyte 5.25

floppy disk drive.

The 1553B data bus is achieved by using a Ballard Technology

PC1553-2 interface board with the associated driver software [5]. The

1553B bus controller is emulated by a PC operating a Digital Technology

DTI 1120 board with the SCE4 application software [13]. The bus is

cabled between the DTI 1120 board and the PC1553-2 interface board.

2.5 Software

A number of commercial software packages are used to develop the

simulation. They are as follows:

1. Microsoft C Compiler Version 6.0 [20]

2. Microsoft Macro Assembler Version 5.1 [21]

3. Essential Software C Utility Library Version 3.0 [11]

4. Ballard Technology Microsoft C Linkable PC1553 Driver [5]

5. Digital Technology SCE4 Application Sftware for the DTI 1120

interface board [13]

6. Companion disk software for reference [24]

In addition, INERCA [15], a trajectory generator developed by the US Air

Force, was used to develop the vehicle trajectories for the simulation.
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2.6 Summary

This chapter presents the theory on which the simulation is based.

The LN-94 is a ring laser gyro strapdown INS which is implemented as a

locally level wander azimuth mechanization. The original 93-state truth

model is reduced to 23-states and the model differential equations are

defined by Equation (21) through to Equation (52). Table 2.2 summarizes

the states used in the reduced model. The model is linearized and

represented by error states rather than whole states. This approach

reduces the computation workload of the simulation.

The INS indicated values are developed as the sum of true

trajectory and INS error. The true trajectory is provided by the INERCA

trajectory generator and the errors are developed through integration of

the error model using the fifth-order Kutta-Merson integration routine.

The stochastic behavior of the model is provided in the form of a random

number generator with output statistics N[O,Qd] wbere Qd is approximated

by Equation (69).

The Intermetrics Simulation [1] forms the groundwork for the

simulation. However, it should be noted that the simulation developed

in this thesis bares little resemblance to this program as a consequence

of the additions/changes that are implemented.

The simulation operates under MS DOS on an IBM compatible 80386

33-Mhz PC with a Cybex math coprocessor. The simulation communicates

through the MILSTD 1553 communication bus and provides information to

the user based on the FNU 85-1 Specification [3].
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III. Program Development

The executable program, INS_LN94, consists of 35 functions, not

including MAIN, and 10 commercially developed functions, all encompassed

in the INSLN94 source code and the five linked object modules. This

seems complex, but a close look at the logic flow and control provides a

good understanding of the program.

This chapter provides an overview of the program, including logic

flow and an explanation of the MAIN function. This chapter includes a

discussion of the propagation technique used to process the simulation.

Also provided are some insights as to the design philosophies for the

program and considerations that were kept in mind when the program was

being developed. The development tools are identified and reasons for

their use are outlined.

The intent of this chapter is to show the global picture of the

program. The reade-, 's referred to Appendix E for a description of each

function and to the source code for detailed coding information.

Appendix F provides the necessary information on preparation and

operating procedures.

As clarification to notation, all program variables and language

syntax are capitalized to differentiate from the text. When referring

to INSLN94, this implies the entire executable program which includes

the linked modules.

Specifically, this chapter is segmented into the following

subjects:
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1. Program Overview

2. Function MAIN

3. Model Propagation Method

4. Information Storage

5. Programming Considerations

6. Development Problems and Tradeoffs

7. Trajectory Generation

3.1 Program Operation Overview

INSLN94 is a simulation of an LN-94 Litton Systems inertial

navigation system. Through a simple question and answer interactive

shell, the user can select a flight trajectory, a navigation session

length, and storage of specified data. The simulation incorporates a

23-state error model and stochastic white noise injection to emulate the

LN-94 INS. A Kutta-Merson fifth-order integration routine is used to

integrate the system forward in time. The simulation responds to a

MILSTD 1553 bus controller and provides two output messages to the bus.

The INSLN94 is essentially a two-part program. It has an

operating shell which controls entry into and out of the simulation,

provides for parameter initialization, and provides plotting

capabilities so the user may analyze data that has been generated.

Within the control shell is the simulation process itself, which is in

the form of the model propagation and input/output processes.

The program begins with a narrative overview of the simulation and

provides details on operation procedures to the user. The simulation

continues with a number of questions to the user, the answers to which
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declare parameters to control the overall operation of the simulation.

Following these questions, the simulation sets the video screen to the

simulation format and simulation commences.

From the questions provided to the user, a number of choices are

available. The simulation permits the use of three possible vehicle

trajectories: static navigation, straight and level trajectory, and the

Litton fighter trajectory. The simulation permits varying navigation

session lengths up to the limits of the particular trajectory. The

fighter trajectory is limited to a two hour flight, the static

navigation has no time limit and the straight and level flight has a six

hour time limit.

The user can store data to files. A choice of error states or

whole states is provided. Error state collection is limited to 14

states from the error model. The whole states are the INS-indicated

values provided by the simulation and again the limitation of 14 files

of data is imposed. Refer to Section 3.4 for a complete list of the

whole states and error states that are tracked and stored to file. In

conjunction with data collection, the user can define the data

collection rate by indicating the number of seconds between collection

points. This feature gives the user flexibility with respect to storage

space, an important option depending on the system in use.

On entry into the simulation, the user must align the system. The

simulation will not enter navigation mode until the system is aligned.

Alignment is simulated by a timing cycle. No "real" alignment takes

place but the simulation indicates and follows the steps necessary to

display alignment status. A four minute alignment takes place and the
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system state vector is initialized with typical four minute alignment

values. These alignment values are fixed for all simulations.

The user can select modes of operation with the defined function

keys or exit the simulation by using the escape key. The user may

monitor one of two output messages and the input message. The two

output messages contain the navigation parameters of interest and are in

response to command words #1 and #24 of the FNU 85-1 specification. The

input message provides present position latitude and longitude and is

formatted in accordance with and in response to command word #2. The

user must initialize present position latitude and longitude prior to

starting the navigation session.

The user is provided with the simulation time to monitor progress

of the simulation. Only stationary navigation does computations in real

time. Due to computational overhead, the other trajectories are not

done in real time. Refer to Section 3.6 for more detail on this issue.

After the simulated flight the user has the option of plotting

stored data to the screen or to a printer using a routine cplJed EZPLOT.

It is a simplified plotting utility made for the USAF. Other options

include exiting the program or restarting the simulation.

Figure 3.1 shows the program hierarchy of the executable program.

All source is written in C programming language except CLKTIO.OBJ and

INSINT2.OBJ, which are written in assembly language. Assembly language

is used in these cases to provide easy access to the machine level

operations of the PC and the Ballard board. The function MAIN is part

of INSLN94.C. The five object modules contain functions that are

called by MAIN. The Microsoft library [20] is included as part of the
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compiler used to develop the program and the Essential library [11] is

linked as an additional library. MCDRVL.OBJ is the object module

provided by Ballard Technology [5] to operate the PC1553 interface

board. Further details on program structure and compilation are

provided in Section 3.5.

I MSUN4 C

SETUP PROCESS CflKTSISJT (XR
.OBJ .OOB J BJ.BJ .B

MICROSOFT 
ESSENTIALIaLIBRARY LIBRARY

Figure 3.1 INSLN94 Program Architecture

3.2 Function MAIN

Like all C programs, the program global control is developed and

contained in the function MAIN. As can be seen from Figure 3.1, MAIN

also provides control over the five object modules. To understand how

MAIN provides this control, a flow chart is provided in Appendix D,

Figure D.1 through Figure D.4. Reference to these charts as the

discussion progresses aids in understanding the logic flow.

Before executing the simulation, MAIN asserts TEST_1553 which

tests for the presence of a Ballard PC1553 interface board. Without the

board, the simulation cannot be implemented on the 1553 bus. Once it
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has been determined that the computer has the appropriate hardware, the

simulation setup and processing begins.

The MAIN function has a number of decision processes that control

the operation of the program. Examining the flow charts it can be seen

that there are really only three major control points in the function.

The first control, working from the outside loop to inside is, WHILE

!SIMULATIONOFF, which maintains control over the entire program. The

second control is WHILE EXITFLAG which maintains control over the

simulation processing operation. The third control is an if statement,

IF (HUNDREDMSO), which controls timing and propagation of the model

itself. Within IF (HUNDREDMS)) there are a number of control

statements. They rely on timing for operation and are therefore

considered secondary.

Figure D.1 shows that WHILE !SIMULATIONOFF starts by introducing

the program with INTRODUCTION and performs all the initializations prior

to entering the actual simulation using INITIALIZE and DISPLAYSCREEN.

Control is then passed to WHILE EXITFLAG for the simulation process.

As shown in Figure D.4, once the simulation process has terminated, the

program enters PLOTRESULTS, which gives the user the capability to plot

simulation results or use the SIMULATIONOFF variable to terminate the

program. INTRODUCTION also provides the user an opportunity to

terminate the program prior to entering the simulation process. These

are the only two areas where SIMULATIONOFF is accessed. Anytime the

variable SIMULATIONOFF is TRUE, the program will terminate.

The second control, nested in WHILE !SIULATIONOFF, is WHILE

EXIT_FLAG, which maintains controls of the simulation process. This
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loop takes control of the simulation once the simulation screen has been

displayed. The main purpose of this loop is to give the user the

capability to exit from the display screen and simulation process in an

orderly fashion. Anytime the user wishes to exit the simulation, the

ESC key can be input from the keyboard and the program performs an

orderly exit from the simulation. The loop starts by initializing the

simulation by reading data from the 1553 bus and setting the present

position in the simulation with ProcessCMD_2. The third control loop

is then encountered.

This third control provides the timing of the simulation and

stipulates when to call the necessary routines to propagate the system

model. HUNDRED MS tracks the passing of each 10 ms time interval. This

is achieved by first setting the timer ENBTIM and new interrupt handler

in INITIALIZE. This is achieved by replacing DOS interrupt 0 with a new

interrupt handler and decreasing DOS timer 0 to call the interrupt

handler every 10 ms. When the interrupt is called, a variable is

incremented and this is tracked by HUNDREDMS and the function indicates

the passing of each 100 ms. The DOS interrupt handler continues to be

called at 18.2 Hz to maintain computer system integrity.

The main disadvantage of this approach is that certain DOS

functions will be affected by the changes made to the DOS timer and

interrupt procedures. For example, the file date/time stamp will be

incorrect. The advantage of this approach is that timing may now be set

up to process in multiples of 100 ms, a simple number to manipulate.

Using this technique, the propagation functions are started. See

Appendix E for detail on these functions.
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To make the simulation a real-time process, the computations to go

from t1 to t 2 must be faster than the actual time. Through some

experimentation, it was determined that processing every second provided

a viable time frame for processing as well as a reasonable time frame

between screen updates and writing to the 1553 bus. Any shorter time

interval tends to increase the computation overhead, not so much in the

integration but in the process to initiate and return from the

propagation function. Any longer time starts to introduce timing

complications for other functions in the simulation. Accordingly, at

each second of expired time, the simulation will enter the propagation

cycle.

To control the length of time the system propagates, and to ensure

propagation does not take place until the system is aligned, the

following if statement is used:

IF (OPMODE - NAV && NAV_RDY &&

((TIME(&CRRTTIME) - STTIMENAV) < SESSIONLENGTH))

ST TIMENAV is set when the simulation enters NAV mode and this is

compared to system time. As long as the result is less than

SESSIONLENGTH, the propagation cycle can be started. If all other

conditions are met, the simulation begins to propagate. As long as the

session length has not expired or the user has not selected the ESC key,

the simulation will continue to propagate. The cycle, once entered,

propagates until the one-second propagation interval has been completed.

The key to real-time processing is that this interval must be completed

in less than one second in order to return, process all other functions,

and be prepared to propagate again at the beginning of the next second.
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Following PROPAGATE, the simulation enters the function

INSERRORINCLUDE. This function processes the errors and trajectory

data into whole state values. These values are then converted to the

format necessary to output on the 1553 bus. Storage of whole and error

states is also performed in this function.

In the same time period and following propagation, the functions

PROCESSCMD_1 and PROCESSCMD_24 are called to calculate the INS-

indicated measurements and to format the data to be sent to the 1553

bus. UPDATE is also called to update the processed information to the

screen.

Every second as well, but out of synch from propagation by 300 ms,

is the function Msg_CmdProc. This function processes any commands that

are input from the keyboard. The function is set out of synch with the

propagation process to lessen the computational burden over that time

frame and as a convenience so that the propagation functions can be

controlled more precisely in their own control process. The final

function that is called in this timing structure is WRITERTDWD, which is

a 1553 function to pass processed data to the 1553 bus.

As the program steps out of the timing structure, a check is made

as to the status of the navigation session. If the session is ended by

elapsed time, IF FINISHSESSION prepares the simulation to exit. A

message is displayed to the screen to indicate the end of the session.

The EXITFLAG variable is set to TRUE and the simulation exits to WHILE

!SIMULATION OFF control.

Once back into the main loop control, the timer and interrupt

handler are reset to system values using REMHDLR and DISTIM. Open
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files are closed and the routine enters PLOTRESULTS. Once in

PLOTRESULTS, the user may select to plot results, to restart the

simulation, or to exit the program. The program calls a routine called

EZPLOT to do any plotting requirements. Once plotting is complete and

the user wishes to exit, the program processes the library function EXIT

to monitor the program status at termination and to perform an orderly

closure of the program.

3.3 Method of Model Propagation

Propagation of the system error model is controlled from within

the function PROPAGATE. This section outlines the PROPAGATE process and

shows, through the use of flow charts, the integration technique used to

propagate the model.

The PROPAGATE function is called within the timing structure at

one-second intervals and only when the simulation has been aligned, the

operational mode is NAV, and the navigation session has not expired.

Figure D.5 shows the logic flow of the function. PROPAGATE is directly

responsible for the integration of the error model. In addition, it

provides the noise injection capabilities that are necessary to emulate

the real INS properly.

PROPAGATE calls two other functions within its process. The

first, INTEGRATE, is the integration technique used in the simulation.

Chapter 2, Section 2.1.4 outlines the philosophy for selecting this

fifth-order Kutta-Merson routine. It is a variation of the FORTRAN

routine that is used in MSOFE [9,10]. Changes were made to accommodate
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the routine in C language and to use ic specifically for this

simulation. Section 3.3.1 provides more detail.

The second function, NOISE, is a variation of the function found

in [24] and provides the randomly gererated noise strengths with

statistics N[O,Qd], which represents the stochastic white Gaussian noise

that is required to implement the system uncertainties during

propagation. Refer to Appendix E for more detail.

As discussed in the previous section, .'ROPAGATE is alled from

within the timing structure to propagate the system model over a

specified time frame. PROPAGATE needs the value of the end time which

represents the time to which the function will propagate before

returning to MAIN. End time is incremented one second and passed to

PROPAGATE. Recall that the one-second interval discussed in the last

section represents the optimum processing time to maintain real time.

Once end time has been passed to PROPAGATE, the process of integration

over a one second interval begins.

PROPAGATE is controlled in a similar fashion as MAIN. It is

encompassed by a decision loop, WHILE !FINISH. The purpose of this loop

is t- continue the integration function until end time has been reached.

Depending on the trajectory, this process can be achieved in a one-

second step, or as the trajectory becomes more dynamic, the one-second

interval may be segmented into a number of smaller steps. The loop also

gives the capability to return from the function INTEGRATE to add noise

at each step interval.

End time is passed and INTEGRATE is called as the first step in

PROPAGATE. On return from INTEGRATE, the status of the integration is
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checked to ensure no errors occurred prior to continuing. If an error

has occurred, the simulation terminates and an error message is

displayed to the screen. The next step is to check the state that the

propagation is in. If at a step interval or at the end of the

integration interval, the function computes the At which represents the

difference in time between the present time and the last time that QO

was computed. NOISE is then called and the result is added to the

solution vector from the integration function. The final step is to

check if time has reached end time. If this is true, the variable

FINISH is set to TRUE and the function exits the loop and returns to

MAIN. Else the function steps through the propagation process again.

3.3.1 Function INTEGRATE. This function is the most complicated

of all the program functions. It represents the basis of the

computations used to propagate the error model. Figure D.6 through

Figure D.8 show the logic flow of the function. The flow chart and the

following discussion are limited to general logic flow and not a

variable-by-variable analysis. The intent is to give the reader an

understanding of the approach and not the exact programming techniques.

As indicated earlier, the integration technique used is a fifth-

order Kutta-Merson process. Automatic step sizing is incorporated into

the routine. By using the variables assigned in INITIALIZE, the

integration routine may provide continuous noise injection or noise at

the end time. In addition, the routine can be set to have a fixed step

size or may enter an error checking process and adjust the step size

automatically. The user also provides a maximum and minimum step size
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and the error tolerance for the error checking process. These variables

are found in INITIALIZE as well.

Once control is passed to INTEGRATE, the first operation that is

performed is to initialize variables and check to ensure the parameters

are within the range expected for the integration routine. This process

is only done once at the beginning of the simulation. Comparisons are

then made between the time interval of integration and the computer

epsilon to determine if the interval is within the resolution of the

machine floating point operations. Computer epsilon is a measure of the

resolution of floating point number for the computer being used to

execute the program.

If the interval is too small, the integration is done using the

Euler method and results are returned to PROPAGATE. This is necessary

since the Kutta-Merson technique further divides the time interval,

which will then be out of range of the computer floating point

operations and return erroneous values. Note that epsilon for a PC has

been independently computed and is a defined constant in the program for

double and single precision operations.

If the interval of integration is large enough to permit step

sizing, the step size parameters are set and then checked to ensure the

integration time + step size do not exceed the end time. If the step is

too large, the step is reduced to the integration interval and

integration continues. Step size segments are evaluated and then the

step size is checked using a similar computer epsilon comparison as

previously discussed. If the step is too small and if at the end, use
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The function concludes by checking the state of the integration.

If at end time, the function terminates and returns status to PROPAGATE.

If the integration is set to provide noise injection at each step and

the integration is at step time, the function returns to PROPAGATE for

noise injection. Otherwise the function returns to Step to continue the

integration until either end time or step time has been reached.

3.4 Information Storage

The process of storing data to files for later analysis is an

important feature of the simulation. As indicated earlier in this

chapter, the user is presented with options with respect to storage of

data. The user can select whole state or error state storage, or select

at what rate the storage will take place. Unfortunately, because the

simulation executes on a PC, limitations are placed on storage.

The most limiting aspect is that DOS allows only a maximum of 20

files to be open at any one time. This doesn't seem too restrictive

until one realizes that DOS uses five of those files for the operating

system and the simulation uses one for the trajectory data. This leaves

only 14 files for storage of data. Ideally, it is desirable to store

all the states the simulation produces. Because of file limitation,

only the more "useful" states are stored to files.

An option that was pursued to minimize this problem was to store

multiple states in one file. This was not a viable option because it

was considered that this would make the plots too busy and lead to less

useful plots.
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When the user selects the states to store, a preselected list of

states is stored to disk. Refer to Table 3.1 for the applicable

variables. The file names under which the states have been stored have

also been included in Table 3.1

The other limiting aspect is storage capacity. Unlike the

"virtually" limitless storage of a mainframe, a PC has some more

realistic numbers for storage. This limitation does not present a great

problem as long as the user is aware of his storage capacity and limits

the data collection rate accordingly. As a guideline for storage, a

three-hour simulation using 30-second collect4on intervals, occupies

approximately 80K bytes of space

The storage process is "hardwired" in the simulation. If the user

desires more flexibility in storage of data, the source code has to be

changed and recompiled. However, the procedure as set down should

handle most situations.

3.5 Progranmming Considerations

In deciding how to develop this simulation, a number of questions

needed to be answered. Foremost was the programming language to be used

and the system under which the program was going to be developed. As

programming had already been started (Intermetrics simulation), the

obvious choice was to continue with their process.

The selection of C as the primary programming language initially

did not appear to be the best choice for this simulation. The original

simulation was not very computationally intensive. With the

introduction of the propagation cycle, the number of computations
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Table 3.1 States Stored to File

Error States File Name Whole States File Name

6L del lat.dat longitude long.dat

61 del long.dat latitude lat.dat

6_ _ d thetaZ.dat wander angle wander.dat

phiX.dat altitude alt.dat

0Y phiY.dat north velocity veln.dat

_ . phiZ.dat east velocity vele.dat

6V" velN.dat vertical velv.dat
velocity

6Vy velE.dat north accn.dat
acceleration

6VZ  velZ.dat east acce.dat
acceleration

Sh delta h.dat vertical acc v.dat
acceleration

6hc  del h_c.dat roll roll.dat

pitch pitch.dat

platform azimuth.dat
azimuth

increased 100-fold. Traditionally FORTRAN is a better "number cruncher"

than other languages. However, the simulation needed some bit

manipulation techniques as well. C is far better suited for this

function. In addition, the simulation needed a good user interface and

display screen manipulation. Again, C is better suited for these

capabilities. The simulation is developed to operate on a PC and C is

quickly becoming the industry standard for PC programming. As C is
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reasonably effective in the area of floating point computations, it

therefore appeared that C was the best overall choice.

C is not without disadvantages. One of its biggest disadvantages

is readability. With all its shorthand coding techniques and the use of

pointers, the program can become very unreadable to a programmer

unfamiliar with C. To avoid this problem, the programs are well

commented, including logical spacing of program statements. Another

area of concern, to the structured programmer especially, is C's

capability to be unstructured, namely, the promotion and demotion

protocols for variables. C allows one variable type to be equal to

another variable type without producing a compilation error. This

allows the program to demote or promote a variable deliberately. Care

must be taken not to misuse this technique as this can result in data

corruption and loss of data resolution. This capability has proven to

be valuable to the simulation program.

The previous program was written in Microsoft C. Microsoft's

latest version of their optimizing C compiler, Version 6.0 [20], has

been integrated to include an editor, system BUILD, and the Codeview

debugger. Microsoft's MAKE utility has also been made more industry-

compatible. It appeared to be the best selection and through the

development has proven to be so. Version 6.0 also is closer to ANSI C

and assists in maintaining portability. It should be noted though that

Microsoft C still has some non-standard constructs that make the program

difficult to move to other systems. In the simulation, few of these

constructs are used and small changes should make this simulation very

portable, although this was not one of the goals of the development.
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The Intermetrics program [1] was written in Microsoft C Version 5.1 and

some incompatibilities were encountered. Small changes in the code that

was borrowed from this earlier program solved these issues with little

complication.

The only disadvantage of utilizing the Microsoft C compiler is the

lack of a DOS extender to take full advantage of the 80386 protected

mode of operation with the associated 32-bit addressing and processing.

The in-house WATCOM-386 compiler [28] was an unacceptable choice for

compiler, as problems were being experienced with operating programs in

protected mode. In addition, some of the library functions and syntax

in the Intermetrics simulation are incompatible with WATCOM and present

difficulties in utilizing any of its code. The goal was to develop a

simulation and not be challenged with a finicky compiler. The only

option left was to select the 286 version of Microsoft C and take

advantage of the compiler in other aspects such as optimization. The

downfall of this choice is the loss of computation speed from not fully

using the capabilities of the 80386 process.

The simulation is developed using the compiler's small memory

model. The small model is most applicable in this case as the program

code and data segments do not exceed 64K each. More importantly, the

small model only uses direct addressing where, the default for variables

is NEAR. This method of addressing provides the fastest code.

One of the reasons that the Microsoft C compiler was selected was

its capability to optimize the source code. All C language source was

compiled with the optimizations listed in Table 3.2.
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Other compiler options include compiling under the 80286 processor

and utilizing in-line 80287 coprocessor commands. For this version of

Table 3.2 Compiler Optimizations

Code Optimization

Ot enables optimization of code for speed of
execution

Oi enables optimization of function
execution
allows intrinsic form of function to be
used

01 enables optimization of loop code
replaces loop code with more efficient
code

Gs removes stack checking code to produce
faster executing rod;.

Microsoft C, the code only utilizes 16-bit words. This obviously means

that the program is not taking advantage of the 80386 32-bit word

processing. The best this simulation can do is take advantage of the

386 machine CPU speed. In-line coprocessor commands are the fastest

option available for coprocessors. The only disadvantage of this

procedure is that, if the machine used to execute the simulation does

not have a coprocessor, the simulation performance is degraded. Other

options allow the flexibility of switching between machines with and

without coprocessors. These option aren't quite as efficient and since

this program requires a coprocessor, dedicated coprocessor compilation

is used.
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The linking process involves using the compiler-integrated BUILD

process. All linkable modules are listed in a program list and the list

is processed as a function of the host source code, in this case

INSLN94.C. Link options include command exepack, which removes

sequences of repeated bytes in the executable code. This optimization

decreases the size of code and reduces the program load time. The

linker also establishes a stack size of 7K. Stacks of this size are not

normally used; however, in this case a large number of global variables

and the recursion in parts of the program necessitate a relatively large

stack.

Chapter 2, Section 2.5 provides a list of the other software tools

used in the simulation development. The assembly language programs are

assembled to object code by Microsoft Macro Assembler Version 5.1 [21].

The C Utility Library [11] is linked with INSLN94.C as an additional

library.

3.6 Development Problems and Tradeoffs

It is well known that software development is a time consuming

process. This simulation is no different. The development stage took a

disproportionate amount of research time. It is also well known that a

program is never at its best level of development. It can be subject to

constant changes and updates as the software is utilized. One could

spend the entire research time in development alone.

To avoid this programming pitfall, and to leave sufficient time

for validation, a number of tradeoffs were accepted for problems

encountered in the development. The first problem was in the trajectory
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generation and data manipulation process. To make the best use of the

data, a spline-fitting algorithm is used to produce data in between the

points that are generated by the trajectory generator. The algorithm

proved to be unworkable in the time frame provided. The alternative

that has been implemented is to assume that, for a short interval, the

trajectory can be considered constant (the output of a time-invariant

model), and the model is integrated over this time interval. To do this

requires large trajectory data files with data provided at one second

intervals. In addition, the trajectory must be benign enough to allow

this assumption to hold.

Problems were also encountered in reading the unformatted date

from the trajectory generators. The alternate method is that INERCA

[15] provides a report file which is an ASCII file of the trajectory

data. This is dismantled by a conversion program to generate the

appropriate data. This alternative approach excludes the use of PROFGEN

[2] as a trajectory generator. Add to this the limitation that INERCA

cannot provide roll, pitch, or yaw trajectory data.

The consequence of these problems and resulting tradeoffs is that

the Litton fighter profile is not implemented. The interface for the

profile is maintained in the program as described up to this point, and

all the conditions of operation still remain valid. This trajectory is

unselectable until further development is performed. Chapter 4, the

simulation validation, does not address the fighter profile at all.

The last problem in the development stage is the concept of real-

time processing. The simulation processes the static trajectory in real

time while the straight-and-level trajectory operates almost in real
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time, losing approximately two seconds for every 30 minutes of

operation. Further development of the propagation module in terms of

efficiency and/or assembly language programming should solve this

problem.

It should be noted, for clarification, that the real-time losses

are a measure of the difference in the simulation clock as compared to

the system clock that is used for debugging the simulation and measuring

real time. The simulation clock is dependent on program performance to

maintain the simulation time as close to the system clock as possible.

The system clock is developed directly form the timing pulses of the

computer clock. Refer to the discussion of function Update, in Appendix

E, for details on this system clock.

3.7 Trajectory Generation

As a result of the problems outlined in the previous section, only

one flight trajectory is generated for the simulation. The profile is

referred to as a straight-and-level profile. In fact this name is

slightly misleading in that the trajectory follows a great circle route.

This allows changes in navigation parameters without being too dynamic.

A constant altitude of 5000 ft and a constant velocity of 586 ft/sec are

maintained for the duration of the flight. The trajectory starts at N

45 degrees latitude and W 84 degrees longitude. The flight is generated

for six hours of operation, although for validation purposes, the flight

is only two hours in duration, as the accuracy specifications are for

two-hour flights.
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The trajectory data is stored in file, straight.trj. This file

must be stored in the same directory that the simulation stores data so

the simulation can access the data from them.

3.8 Summary

This chapter gives the reader some insight into the development of

the simulation, INSLN94. The discussion is limited to the two main

processes in the program, function MAIN and function PROPAGATE. These

functions are the key to the simulation. MAIN provides the simulation

control while PROPAGATE is the function which controls the integration

of the error model. Within PROPAGATE is the function INTEGRATE which is

treated in some detail in Section 3.3.1 of this chapter. It provides

the means of integrating the model forward in time. Appendix D provides

flow charts of these functions.

The simulation was developed using the Microsoft C Optimizing

Compiler Ver 6.0 [20] and the program is optimized using parameters

listed in Table 3.2. The compiler does not take advantage of the

80386's 32-bit processing, but for reasons outlined in Section 3.5,

this compiler proved to be the best choice.

Section 3.6 outlines a number of problems encountered during the

development of the simulation. The problems impose the restriction that

the fighter profile is not useable at this time. Further development

should solve this problem.

Information may be stored for later analysis using the simulation

interface to select the appropriate information. Table 3.1 outlines the

information that may be stored. Whole states or error states may be
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tracked and stored and a plotting routine called EZPLOT may be utilized

to view data.

The reader is referred to Appendix E for a description of all the

simulation functions and to Appendix F for simulation user operating

procedures.
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IV. Simulation Validation

The simulation is of little use if it is not validated to assess

its accuracy in emulating the LN-94 INS. In this chapter the issues

related to validating the model and the simulation operation are

outlined. The validation process is completed in three steps. The first

step is to analyze the performance of the 23-state model used in the

simulation. There are certain assumptions made about the 23-state

model, so this step in the validation process provides a check of the

proper implementation of the model rather than the appropriateness of

the model.

The second step is to compare the performance of the simulation

against the outputs of an actual LN-94 FNS in static navigation, and to

simulate a flight. This step provides the most concrete measure of the

fidelity of the simulation. This process shows how closely the

simulation emulates the operation of an actual INS, and how well the

simulation follows a true trajectory.

The final step is to check the performance of the noise generation

process. This process involves analysis of the random number statistics

and the general behavior of the noise produced by the stochastic white

noise generator function NOISE. Refer to Appendix E details on this

function.

This chapter explains the validation process as described above.

Procedures are outlined and conditions of the validation are presented.
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Data resulting from this process is presented in applicable Appendices,

and a discussion of the results is provided.

4.1 Model Validation

As noted in Chapter 1, the purpose of this research is to

implement a proven model of the LN-94 into the simulation. As such,

this means finding a reduced-order model of the LN-94 that has undergone

sufficient validation to be considered a valid model. Through

consultation with various people doing on-going research in this field,

specifically Stacey ani Paschall [23,27], the decision was made to

develop the simulation based on a 23-state model which had been

validated by Stacey during his research [26]. Stacey's validation

process included a comparison of a number of simulation runs on MSOFE

[10] against the results of the full 93-state Litton model. It was

decided that the fidelity of Stacey's model was sufficient to use in

this simulation.

One type of validation necessary for this model is to ensure the

appropriate behavior of the model under various conditions of gyro and

accelerometer error for the static navig. -ion case. This validation is

necessary since the model is programmed in a different language and is

executed within a different operating environment. This validation is

also required to ensure the integration technique is functioning

properly.

The baseline information used in this validation is the unified

analysis done by Britting [8]. Britting analyzes the behavior of a 9-

state INS error model when gyro drift or accelerometer bias is applied
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to the north, east, or down axis. An exact correlation between

Britting's zesults and the results of this model is not possible, but

general characteristic behavior is identified. It is important to note

that Britting's analysis only considers a two-accelerometer local level

system while the Litton model is a three-accelerometer system. The

result is no vertical channel components that affect the LN-94 model

have any effect on the Britting model.

To perform this validation, the propagation module of the

simulation is executed. The module is coded identically to the

simulation propagation process except that there are no real-time

considerations. The module tracks error states while integrating

forward in time over a designated time interval. Noise is not

introduced into the model during integration. This is to ensure the

same conditions as the Britting analysis. The trajectory data used

matches the Britting analysis with longitude set to zero degrees, the

latitude set to 45 degrees, and the gravity acceleration set to one g.

All other trajectory data values are set to zero. Data is collected

every 30 seconds over a simulated 36 hour time frame. All initial

conditions are zero. The bias or drift of interest is applied at a

constant value of one meru (milli-earth-rate unit, .015 deg/hr) of gyro

drift or 10-4 g for accelerometer bias. The analysis looks at latitude,

longitude, and attitude errors for a given gyro drift or accelerometer

bias.

Another difference between the Britting analysis and the LN-94

implementation is that the LN-94 coordinate system is implemented in the

East-North-Up convention, while the Britting convention is North-East-
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Down. The transformation between the LN-94 convention and the Britting

convention is:

1= 0 (72)

Dj=10 0 -1l1

This presents some complications when making comparisons. Without

explicitly deriving Britting's equations in the ENU convention, it can

be seen that this transformation changes some sign conventions in

Britting's dynamic matrix and also switch sensitive axes uncertainties.

This difference in convention means that for analysis 0. equates to CE,

Oy to CN, and z to -ED-

Appendix G shows the results of the 23-state model validation.

One of the obvious features of the simulation results is the magnitude

of the error. In all cases except for 0., the magnitude of the error is

on the order of 10 times greater than that found in the Britting

results. This increase in magnitude has even elevated magnitudes of

error in the azimuth gyro drift case to readable levels.

This difference is significant and would lead one to question the

validity of this comparison. Keeping in mind the intent of this part of

the validation process, and after examining the performance of the

simulation in the other validation processes, this magnitude difference

may be overlooked at this stage. Refer to Section 5.2 for further

discussion of simulation validation.

It is likely that part of this difference is due to error model

definition. If a detailed term-by-term comparison of each error

equation is performed, though this is not done for this document, it
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shows inclusion of terms in the LN-94 model that are not present in the

Britting model. Most evident, as mentioned previously, is the inclusion

of the vertical errors in the position and attitude equations of the LN-

94.

From a modal point of view, simulation results are consistent with

Britting results. For gyro drift, Foucault modulation occurs as a first

order influence in level alignment eirors, Figures G.6-G.7, G.II-G.12,

and G.16-G.17. As expected, it is a second order influence on latitude,

longitude, and azimuth errors, as seen in Figures G.4-G.5, G.8, G.10-

G.11, G.13-G.15, and G.18. A Foucault frequency of 34 hours (consistent

with 45 degrees latitude) is apparent, as is the 84-minute Schuler

period. For the accelerometer bias plots, again the modes are

consistent. The Schuler mode is dominant and the same 34-hour Foucault

frequency is evident, as in Figures G.21-G.24 and G.26-G.29. Due to the

type of implementation that Britting presents, the vertical

accelerometer is not plotted.

In both the gyro drift case and the accelerometer bias case, z

does not respond in the same fashion as in the Britting analysis. Note

that the error magnitude of 0, for accelerometer bias for the simulation

is considered to be zero, Figures G.25 and G.30. What is plotted is at

the noise level and considered inconsequential.

Errors in the vertical axis are unstable. Again, this difference

is directly related to the inclusion of the vertical channel. This

difference is also attributed to the fact that the vertical axis is

uncommanded, as the LN-94 is a wander azimuth implementation.
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It is seen from the results that the error model exhibits the

proper modal behavior. Performance of the 23-state model indicates with

some confidence that the model and the associated C language coding

performs well in the simulation. The integration technique performs as

expected. Although this is not a complete validation, it does provide

the necessary insight into the operation of the model and the

integration technique to be able to proceed with the simulation

validation.

4.2 Simulation Validation

To validate the LN-94 simulation, the ultimate test is a

comparison of data generated by the simulation and data generated by an

actual INS. For this validation, no actual flight data is available;

however, a static navigation data set is generated and is used for this

validation process. The validation also includes analysis of a

simulated straight-and-level flight trajectory.

4.2.1 Accuracy Considerations. To evaluate the performance of

the simulation, accuracy benchmarks must be established. FNU 85-1 [3]

specifies the accuracy requirements for the LN-94. Table 4.1 summarizes

the accuracy limits of interest. These accuracies are based on a two-

hour flight so any comparisons are made up to and including the two-hour

point on plots.

Present position accuracy is measured in terms of CEP or circular

error probable. CEP is a measure of the probability that the indicated

present position will be within a specified radius of the true position.

CEP is defined as:
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Table 4.1 LN-94 Navigation Accuracy Limits

Navigation Parameter Accuracy (4 min GC Align)

present position lat and long 0.6 nm/hr (cep) 2 hour flt

VN, VE, VU  ±2.5 ft/sec

wander angle ±0.033 deg (5.76e-4 rad)

pitch ±0.033 deg (5.76e-4 rad)

roll ±0.033 deg (5.76e-4 rad)

platform azimuth ±0.05 deg (8.73e-4 rad)

AN, AE, AU ±0.5 ft/sec2

altitude 150 ft

(R ) (73)

CEP = 0.83 -1 N

N is the number of missions and RERk is the radial error rate on the n-

th mission, which for terminal information, is the difference between

the actual position and the indicated position for the period of the

flight.

The measure of a good INS is its capability to track a true

trajectory. In the case of a flight this is easy enough to measure as

the difference between the true and the indicated trajectory. The

actual INS static case is somewhat different. The actual environment is

not reproduced exactly in the simulation. A model does not precisely

follow the actual piece of equipment. Models are by definition

approximations to some degree. Typically, high frequency influences are

not taken into consideration and therefore do not impact on the model.
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In addition, in the static navigation case is the fact that the

specific force information is not be modelled in thz INS truth model.

It is required as an input. This is a problem if the INS environment is

uncontrolled. Environmental vibrations are a minor concern in that they

cannot be isolated and are not realistically simulated for this thesis.

This results in unpredicted specific force influences on the INS.

As a result, there is no true trajectory for the INS other than

the fact that it theoretically should be reporting its position as

standing still. This makes accuracy measurement somewhat arbitrary.

The accu-acy benchmarks must be set by the developers. After some

discussion and application of engineering judgment it is decided, for

this study, that the static navigation simulation must maintain present

position latitude and longitude within ±1% of the actual INS position

and exhibit the same characteristic behavior. All other states of

interest must exhibit the same behavior as their actual INS

counterparts.

The criteria of Table 4.1 is used for both the simulated static

navigation case and the simulated flight. For both cases, the accuracy

criteria are applied with respect to the true trajectory.

4.2.' Data Collection. Data for static navigation is collected

from the LN-94 in the AFIT Navigation Lab. Using the 1553B bus

controller, the INS is aligned at the AFIT latitude and longitude, N 39

degrees 46.925 minutes and W 84 degrees 4.992 minutes. After alignment,

the INS is set to NAV mode for a three-hour navigation session. A

three-hour collection is made to look at behavior beyond the usual two-
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hour limit. Data is collected from the MILSTD 1553B bus every 30

seconds.

The method of collection is an in-house program executed on

NAVSTAR, which samples the bus data and converts designated words of

data into decimal format and stores them to file. A conversion program

was written to make the data usable with the plotting routines used in

this thesis.

A similar approach is taken with the simulation. The initial

position is set by the MILSTD 1553B through Lhe bus contrcller to the

same position as the actual INS. The initial state vector is declared

Table 4.2 Initial State Vector

State Value State Value

6x, 0.0 6x13  0.0

6x2  0.0 Sx14  9.696391e-9

6x3  0.0 6x15  9.696391e-9

6x4  1.084e-5 rad 6x16  9.696391e-9

6x5  1.084e-5 rad 6x17  6.43972e-5 ft/s

6x6  5.8178e-4 rad 6x18  6.43972e-5 ft/s

6x7  0.0 6x19  6.43972e-5 ft/s

6x8  0.0 6x20  2.424071e-5

6x9  0.0 6x21  2.424071e-5

6x10  0.0 6x22  0.0

6x n1  0.0 6x 23  2.236 ft

6x12  0.0

as per Table 4.2. Selection of these initial conditions is a result of
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examining the returns from an MSOFE simulated alignment [10,27]. The la

values provided in the Litton CDRL [17] do not necessarily represent the

typical alignment values of the INS. It was necessary to examine the

results of an INS alignment to ascertain the values one might expect to

see after an INS has aligned itself.

A number of initial conditions were attempted, but they gave

erratic behavior or large error propagation. The conditions outlined in

Table 4.2 provided the best performance and are substantiated by the

validation results. The initial conditions are coded into the

simulation and for all cases the simulation starts with these values.

The simulation does not actually perform an alignment. A timing loop is

executed and these conditions are set.

The simulation software is initialized to inject noise into the

model at the end of each step. The maximum step size is set to one

second and the minimum step size is set to 10-20 seconds. Error

tolerance is set to 10 - '. These parameters are not particularly

critical for stationary navigation. The navigation is benign in nature

and step size does not change and errors are minimal. These parameters

become more important as the dynamics of the flight increase and become

variable.

Trajectory data for the static case include present position

latitude and longitude, vertical acceleration equal to one g, and a

wander angle of -1.588054 radians. All other parameters are set to

zero. The wander angle is included in the trajectory data, as it

reflects the wander angle to which the actual INS aligns.
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The simulation is set for a three-hour navigation session and NAV

mode is selected. The data from the simulation is collected every 30

seconds. It should be noted that the data is collected from the

solution of the integration routine just prior to formatting for the

MILSTD 1553B. This differs from the data collection procedure for the

actual INS. Data is collected directly from the 1553B bus. This

difference is necessary to reduce the computational load on the

simulation. Otherwize data would have to be converted back into decimal

form prior to analysis.

The bus words have a limited resolution, while the simulation data

is a double precision floating point value. This is worth noting but

does not present any great difficulties. Data is collected for the

parameters listed in Table 4.3. Plotted results of this data are shown

in Apnendix H and a summary of maximum error magnitudes is provided in

Table 4.4.

Table 4.3 Navigation Parameters Collected for Comparison

Navigation Parameter Navigation Parameter

present position lat and long pitch

velocity roll

altitude platform azimuth

wander angle acceleration

Data collected for the simulated flight is the same as for the

static flight, with the exception that the trajectory data is provided

by a data file and selected as described in Appendix F. Data is

4-11



collected every 30 seconds for a two-hour period. Plots of data

collected are shown in Appendix I and are analyzed in detail in Section

4.2.4.

4.2.3 Static Navigation Performance Analysis. Two of the most

important navigation parameters are latitude and longitude. The

comparison of these parameters indicates close emulation of the LN-94 by

the simulation. The error bounds of the simulation fall well within the

one percent allowable. Calculations based on the two-hour indicated

position reveal a change in position of 4071.17 feet or a rate of 0.34

nm/hr. This equates to a CEP of 0.27, well within the bounds of the FNU

85-1 specification of 2.6 for a single flight.

Table 4.4 Simulated Static Navigation--Summary of Maximum Error

Magnitudes

Navigation Parameter ( Maximum Error (2-hr flight)

present position 1 4071.17 ft (0.34 nm/hr) j
altitude 150 ft

X velocity 0.52 ft/sec

Y velocity 1.4 ft/sec

Z velocity I ft/sec

wander angle 2.6xi0 -5 rad (0.0014 deg)

roll 0.0 rad

pitch 2x10-5 cad (0.0011 deg)

platform azimuth 5.OxlO 4 rad (0.028 deg)

Figure H.3 depicts the altitude behavior of the simulation. A

plot of the INS altitude is not provided, as it is zero. This is the

case as the altitude update for the INS is not provided as a measure of
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baro-altimeter uncertainty but is indicated as a true value at all

times. There is no baro-altimeter model in the actual INS installation.

What is shown in Figure H.3 is the effects of the simulated baro-

altimeter uncertainty. The values of ±150 ft are quite reasonable for a

barometric altimeter [3,23]. To achieve this result the noise component

of 6hc was reduced from the model documentation value of 33.0 to 4.0.

Figure H.4 shows the wander angle behavior. The trend of the

simulation is the same as that of the INS, and values again are well

within the one percent allowable error. The simulated two-hour value of

the error in wander angle is very small and is well within the accuracy

bounds specified in Table 4.1.

Velocity behavior in the X axis is very close to the INS data.

Velocity in the Y direction, Figure H.6, is the only state that behaves

contrary to the actual INS. The difference error between the INS and

simulation is quite large and the growth of the INS velocity is

significant compared to the simulation though within limits of accuracy

in Table 4.1. Some of the growth may be explained by the real

environment of the INS versus simulated environment. Velocity in the Z

direction is consistent with the baro-altimeter. Recall that, for the

INS, there is no baro uncertainty. Accordingly one would expect the

vertical velocity to be zero relative to the simulation data. Again,

accuracy criterion is met.

Roll, pitch, and platform azimuth show equally good performance,

although their emulation of INS data is not as close as the other

parameters have been. Behavior is similar and, for the simulation, the

FNU 85-1 accuracy is being met.
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Figure H.1l and Figure H.12 are provided to highlight the previous

discussion of vibration and its effects on the INS performance. The

level accelerations are equal and non-zero. This is perceived as high

frequency vibration of the INS. Heavy equipment next door to the lab is

likely to be the source. Based on this, it is expected the actual INS

errors will be greater in general than the simulation errors, and they

are. It is important to keep in mind that the real world of the INS is

very difficult to reproduce in the simulation.

Tuning of the simulation model proved to be relatively ineffective

at making the simulation match the LN-94 simulation with the exception

of the baro-altimeter uncertainty. By tuning the baro-altimeter

uncertainty, typical baro-altimeter behavior of ±150 ft is achieved.

4.2.4 Flight Simulation. The simulated flight validation looks

at the results from the point of view of the limits set in Table 4.1.

If the simulation can follow the true trajectory within these limits,

then the simulation is considered valid. The simulation is validated

with a straight-and-level trajectory only.

The straight-and-level profile is along a great circle route to

highlight some of the operating characteristics of the INS for teaching

and research purposes. The setup and data collection is as defined

previously. Appendix I provides results of the simulation compared to

the true trajectory. Appendix J provides plots of the error magnitudes

of the simulation as compared to the true trajectory and Table 4.5 shows

these errors in tabulai form.

Results of the validation are excellent. Figure J.l and

Figure J.2 provide the magnitude of error in present position. From
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Table 4.5 Simulated Straight-and-Level Trajectory--Summary of Ml.ximum
Error Magnitudes

Navigation Parameter Maximum Error (2-hr flight)

present position 5325.19 ft (0.44 nm/hr)

altitude 160 ft

north velocity 1.95 ft/sec

east velocity 0.65 ft/sec

vertical velocity 1.16 ft/sec

north acceleration 6xlO -5 ft/sec2

east acceleration 6x10-5 ft/sec2

vertical acceleration 6xlO 5 ft/sec2

wander angle 0.007 deg

roll 0.00104 deg

pitch 0.0022 deg

platform azimuth 0.0333 deg

these --lues, the indicated position after two hours is 5325.19 ft from

the true position with an RER of 0.44 nm/hr. This provides a CEP of

0.37. Present position errors are well within the accuracy parameters

of Table 4.1.

Altitude behaves as predicted in the static simulation case. The

baro-altimeter uncertainty drives the altitude state to errors within

the 150 ft accuracy limit. Velocities display the characteristic

sinusoidal behavior and are limited to magnitudes of less than 2.0

ft/sec, as seen in Figure J.4 to Figure J.6.

The magnitudes of acceleration in the north and east directions,

as depicted in Figure 1.7 and Figure 1.8, are very small. As a result,

the initial conditions influence the error behavior more than expected.
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Over time the initial condition influence is reduced and the simulation

follows the true trajectory extreme.)2 closely. As acceleration

magnitude increases to more typical levels as in the vertical

acceleration, Figure 1.9, the effects of initial conditions become

insignificant.

Roll and pitch error behavior, as seen in Figures J.11 and J.12,

are within accuracy limits. The only parameter that falls outside the

accuracy limits is platform azimuth, portrayed in Figure J.13. The

azimuth error starts outside the limits and over time starts to move

towar:s the i..ue Lrajectory. This leads one to believe that the initial

conditions may be impacting on this parameter. Platform azimuth is a

function of the solution to 0,. The initial condition for this state is

set well below the la value designated in the Litton CDRL and is

consistent with values for an INS alignment. The error in platform

azimuth is just outside the limits of the FNU 85-1 specification

(Table 4.1) and is considered reasonable without any further data for

comparison.

In all cases, the simulation performs extremely well in emulating

an INS and in staying within the accuracies expected of the LN-94. Very

little tuning of the model was required to achieve this accuracy. A

case can probably be made for increasing the values of the noise

strength in the model to better emulate the "inaccuracies" of the I/-94.

This would introduce higher levels of uncertainty into the noise process

and induce greater magnitudes of error in the model. To do this

realistically, flight data for the performance of the LN-94 would be

required. States dealing with accelerometer and gyro uncertainties
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would be ideal candidates for this treatment, but again with no baseline

data for comparison, the attempt to emulate the exact accuracy of the

LN-94 would be futile. The ability to stay within the LN-94 accuracies

is sufficient substantiation to consider the simulation valid.

A case can also be made for increasing the number of states in the

model. Rather than relying on noise parameters to produce the

additional errors, some of the errors that are lost in the model

reduction can be reintroduced to the model.

4.3 Knis- Proc'q V !idation

The method of generating the Gaussian white noise w,.ich provides

the randomness of the model process is a critical one. As is discussed

in Chapter 2, the stochastic process must have statistics of N[O,Qd].

The techniques used to develop these statistics are discussed in some

detail. The one thing that remains to consider is whether the random

number generator provided as part of the compiler can provide the random

numbers with the appropriate statistics.

The number generator must be able to produce scalar numbers in a

Gaussian distribution with statistics N[0,1]. The supplied generator

provides uniform deviates between the values zero and one. The number

generation process involves summing twelve random numbers and then

subtracting the value 6.0 from the sum. The summing process provides

approximately Gaussian characteristics and the subtraction sets the mean

to zero.

Figure 4.1 shows the results of generating 2500 random numbers

from the function RandomNumber. The sample size is not significant. A
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number of different sample sizes ranging from 50 to 5000 were evaluated.

All produced the same kind of statistics. The typical Gaussian shape

can be seen and the statistics for this sample are N[-0.011863,1.01145].

225 -
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L25

o 100 - - - r . -

o 75 , -
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25 / "

-5 -4 -3 -2 -1 0 1 2 3 4 5

Random Number Value

Figure 4.1 Random Number Statistics

The deviation from the zero mean value expected is acceptable,

though further refinement could be achieved by compensating for this

difference before the numbers are used in the noise process. Despite

this difference in mean value, by utilizing numbers with these

ctatistics, one can be confident in that equating Equation (71), the

appropriate stochastic noise can b- generated.

Figure 4.2 shows an example of the noise generated by the

simulation for st-t- four of -hp 21 qtp mn1 A - andonezsz 01
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Figure 4.2 Noise Characteristics of State Four

the noise is noted in the noise behavior and the approximately zero mean

value is apparent. The magnitude of the noise is consistent with the

values expected for the model. The selection of the state is not

important as analysis has shown that each noise source is behaving in

comparable fashion.

4.4 Suimnary

This chapter discussed the validatinn of the simulation. The

results indicate that the simulation is emulating the actual INS

performance quite well. The criteria, to maintain less than one percent

difference errer between the INS and the Rimultion. is met- LLi, r11,
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of static navigation. Environmental influences and higher order errors

can account for differences between the two sets of data. The

implementation of a reduced order model in the simulation can account

for some of tkese differences as well. Some error emulation capability

is lost in the reduction. Appendix H summarizes the static navigation

simulation as compared to actual INS static navigation data. Table 4.4

displays maximum errors produced by the simulation for the static

navigation case.

Appendix I and Appendix J summarize the results of the straight-

and-level flight trajectory. Table 4.5 summarizes the maximum errors

encountered in the simulation. The accuracy of the simulation can only

be measured as a function of the accuracy limits in Table 4.1. As is

seen by the data presented, the simulation does meet this benchmark.

Unfortunately, without flight data from the actual INS, tuning the

simulation, as indicated in Section 4.2.4, is not possible. Validation

shows that the simulation is a good emulation of the LN-94 based on

benchmarks that are available.

The noise generation technique is discussed to validate its

performance. Figure 4.1 indicates that the statistics of the random

number generator are as required and Figure 4.2 shows the typical

behavior of the noise injected into the model. It can be said with

confidence that the noise generation process is performing as is

required.
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V. Conclusions and Recommendations

This chapter restates the major objectives of the thesis and

indicates to what extent the objectives are met. The research effort is

summarized and recommendations and future considerations are presented.

5.1 Conclusions

The primary goal of this research is to develop a high fidelity

simulation of the LN-94 INS for use on a personal computer in the AFIT

Navigation Lab. This goal is achieved. Some problems are encountered,

however, and are outlined as the individual secondary goals are

discussed.

The selection of a reduced order model of the LN-94 is one of the

first tasks completed in the research. The intent of the reduced order

model is reduction in computation loading. This is imperative in a

simulation trying to achieve real-time processing on a PC class machine.

The answer was found in research being conducted at AFIT. A 23-state

LN-94 model was developed but was not implemented by Stacey (23,27].

Development of this model in this thesis is limited to implementation

within the simulation and some tuning of noise processes to ensure a

match with the actual INS operation.

Validation of the model using Britting's analysis is cursory at

best, given the differences in implementation. Britting's data,

however, is presented in such a way as to make the comparison with

simulated data relatively easy. The characteristics of the 23-state
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model are consistent with INS behavior, and simulation results bear out

that conclusion. Differences between the LN-94 simulation and

Britting's analysis are such that, for future research, the validation

results provided in this research may be more appropriate.

One of the most critical goals of the thesis is the selection of

an integration technique. This technique is responsible for the

propagation of the model over time and model validity is directly

impacted by its processing abilities. The fifth-order Kutta-Merson

technique is chosen based on its ability to handle six-degree-of-

freedom, trajectory-type integrations [7]. The automatic step sizing

algorithm is an added advantage to the technique.

Problems were encountered with the development of a spline-

fitting algorithm for the generation of trajectory estimates between

data points. The varying dynamics of the fighter profile do not permit

using fixed trajectory points and still achieve the necessary accuracy

in the simulation. To obtain realistic results, a spline-fitting

algorithm must be implemented. The programming of this algorithm is not

achieved in this research. Errors in the coding could not be resolyed.

Synchronization of data with integration and the generation of corrupted

data proved to be the greatest areas of concern and as a result, the

fighter profile was not implemented.

INERCA [15] proves to be a very easy program to use but is limited

in the output data set that it provides. This program should be

expanded to include roll, pitch, and yaw data or be abandoned in favor

of PROFGEN [2].
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Stochastic noise generation is discussed in some detail in Chapter

4, Sectin- 4.3. The system random number generator proves to be

effective. Sequential correlation is essentially eliiinated by using a

random number to select from a vector of random numbers. If there is a

weakness in this generator it is the size of RANDMAX which in the case

of PC's is 32768, where RAND-MAX represents the maximum positive integer

type number achievable in the 16-bit environment. The consequence of

this is that, for the large number of random numbers required, it is

necessary to evaluate the same 32768 numbers n times, where n is the

actual numbers required divided by 32768. Admittedly, the numbers are

somewhat correlated by this process. To achieve better results, a

different operating system is required.

One of the goals is to design an effective user interface. The

user interface is achieved through a character-based, interactive

question-and-answer approach. Sufficient information is provided by a

program overview at the beginning of the program, and the questions are

fairly self-explanatory. The interface allows selection of a trajectory

type, type of states to track and store, and collection frequency.

Plotting capabilities are accessible through the program interface and

are provided by EZPLOT, an Air Force developed program. A user's guide

is provided as Appendix F if any questions arise concerning the

operation of the simulation.

The capability to communicate with the 1553B bus is achieved

through the Ballard PC1553-2 interface card [5]. Formatted data

according to the FNU 85-1 [31 is produced by the simulation. The
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simulation responds to any one of three command words; #1, #2, and #24.

The specifications for these command words are provided in Appendix A.

The final goal is the validation of the simulation. Validation

results show that INSLN94 C is a viable simulation of an actual LN-94

INS. Validation is performed for a static navigation trajectory and a

straight-and-level trajectory. Both cases highlight the simulation's

ability to emulate the LN-94. There are limitations to the validation

process.

The static navigation case is compared against the data collected

from an INS in an uncontrolled environment. This results in unknown

influences on the INS which are not modelled in the simulation.

Simulation noise processes can account for some of these unknown inputs

but not all. Nonetheless, the simulation emulates the LN-94 within ±1%

for position error, and behavior of all navigation parameters is

similar.

The straight-and-level simulation tracks the true trajectory very

well. Some might say too well. Without specific flight data to compare

against, the accuracy of the simulation is based on the FNU 85-1

accuracy specifications. The simulation meets all the specifications

but the question that arises is, "Did the simulation meet them too well

or not well enough?" The flight deta can show precisely how the LN-94

tracks a trajectory of this type. An INS of this caliber should follow

the true trajectory very closely. A good flight data set would prove

beneficial to the validation process.
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5.2 Recommendations

Tae production of an INS siwulacion is the primary goal in this

thesis ard the degree of its fidelity is a measure of the success of thr

thesis. It is an excellent tool. iy' which to exercise the knowledge

acquired during the navigation sequence cf the masters program.

However, that is only one aspect of the research effo,:t.

A good portion of this effort is in the software devel pment of

these principles into a cohesive and efficient simulation. This

simulation development requires e substantial amount of programming: on

the order of 5000 lines. It requires a broad knowledge in programming

techniques in both higher level language and assembly language. A good

working knowledge of the personal computer ard the DOS operating system

is required. The molding of the navigation pinciples into a software

package with specific capabilities is a fascinating exper.ence.

Continued research in this area is highly recommended as simulation is

the tool of the future.

It is also recommended that the software development that does go

on as a result of research receive more attcntion in the overall

evaluation of the research effort. Emphasis should be put on developing

well managed, well documented, and efficient software development

techniques.

The process of validating software is an on-g(,ing process. The

validation of this software was sufficient to show that the simulation

operates well as an emulation of the LN-94. However, given the

magnitude problems in the model validation , and the somewhat

uncontrolled environment of the static navigation validatio., a more
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precise evaluation tool is required to further substantiate the previous

statement. It is str(ngly recommended that the validation process

cortinue and an excellent tool for use in further validation is MSOFE

[10.

The primary fa-k should be to evaluate the 23-state mouel. By

implementing the 23-state model in MSOFE on a VAX-based macne it is

possible to coipare results to cnsure proper operation of the simulation

software. This comparison also presents an opportunity for more tuning

of the mode, and evaluation of initial conditions. It i important to

continue evaluation of the initial conditions in an effort to reduce the

phase differences that are seen between the simulated data and the

actual INS data of the static navigaticn case.

The validation should first look at the error state bphavior of

the model to try and identity why the model is generating rror

magnitudes iO times greator than the Bri-ting analysis. When this

sittiation has been clarified, MSOFE static navigation runs can be used

to fine tune the simulation. This approach eliminates the unknown

environment influences that are present when compared to actual INS data

and provides the benchmark needed to tune the simulation in the static

navigation c se.

Another area where MSOFE ma) be used to advantage is through an

implementation of the 23-state model in MSOFE on a PC-class machine.

MSOFE can propagate the truth model in a similar fashion to the

simulation, except with no real-time considerations. The resul's can

provide a good indication of simulation capabilities. The MSOFE results
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provide a benchmark in the PC environment, and therefore, an excellent

tool for validation of the simulation software.

5.2.1 Future Research. The capabilities of a simulation are only

limited by the creativity of the programmer. This simulation is no

exception as the possibilities for future enhancements are limitless.

It should form a solid basis for continued simulation research leading

to an integrated navigation simulation package at the AFIT Navigation

Laboratory.

In the short term, refinement of the program should be the next

step in any research. The first step in refinement should come in the

development of better trajectory data handling techniques. As this is

the only area of difficulty in the development stage, this should

receive attention first in any continued research. A close look at the

synchronization issues of a spline-fitting algorithm would be

beneficial. Synchronization difficulties and the generation of

corrupted data are the main reasons this algorithm is not implemented.

With the appropriate amount of time, this algorithm can be coded and its

inclusion would enhance the simulation tremendously and allow for the

use of highly dynamic trajectories.

Real-time simulation is another area which does not achieve full

success. The static navigation case processes data in real time while

the straight-and-level flight loses real time at a rate of approximately

two seconds for every 30 minutes of navigation. Two approaches are

possible to solve this issue. The first approach is to implement the

simulation to take advanztdge of the 386 processing capabilities. This

involves conversion of the source code to 386 compiler source code.

5-7



Recall the problem: e.iiuukncered with the WATCOM compiler, as discussed

in Chapter 3. Care should be taken in selecting a compiler and

depending on which compiler is used, this process may be simple or

complex.

The second approach is to take advantage of the speed of assembly

language. This approach tends to be more time consuming to implement

and in most cases very difficult unless the programmer is very familiar

with assembly language. It also leads to less maintainable or

modifiable code in addition to being difficult to dccument. The first

approach is recommended though both are viable solutions to real-time

processing

Expansion of the communications capabilities of the simulation is

another area of refinement. The simulation is presently restricted to

responding to one input and two output messages from the 1553 b'ii. All

words are not utilized in each case. Expansion of the data set to

include all words in these messages and possibly respond to other

messages is a challenge.

The simulation can benefit from an alignment simulation. The

alignment could be developed to provide randomized initial conditions

and the simulation could have the capability to start NAV mode in

attitude ready or degraded NAV modes [3]. An alignment process could

make the concept of degraded navigation meaningful and provide a better

teaching tool. The randomized initial conditions could provide the

capability of multiple different flights for analysis of data.

The integration of Kalman filtering into the simulation would

further enhance its capability to emulate the LN-94. One concern,
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though, is to not simply develop another MSOFE. The challenge of real-

time propagation and filtering would be an excellent follow-on research

effort.

The final goal of any further research would be to develop a truly

integrated navigation system simulation in the AFIT Navigation

Laboratory. The expansion and development of the limited GPS and CADC

simulations now present in the laboratory with the INS simulation

incorporated into one system would provide an exceptional research and

learning tool.
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Appendix A: FNU 85-1 Word Formats

This appendix provides a summary of the information thaL is

necessary to format the data produced by the simulation for the MILSTD

1553. The command word specifications are supplied and the command word

responses are outlined. The exact format of those words used by the

simulation are also provided.

A.1 Command Word Specifications

Table A.1 Command Word Specifications

ID ADDR R/T SUB-ADDR CNTCN Comments

Command Word 05h T 00001 22 INU to CC
#1

Command Word 05h R 00010 4 CC to INU
#2

Command Word 05h T 11000 14 INU to CC
#24 1 1 __

Note that the word counts are not the full 32 words that are displayed

on the simulation screen. The screen will only update those words

specified in the command word specification.
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Table A.2 Responsc to Command Word #1

Word Word Specification Ref Output

1 INU Status Word 6

2 Time Tag Velocity (16,17,18) 99B

3 Time Tag Attitude (10,11,12,-') 99A

4 Time Tag Present Position (6,7,8,9) 99C

5 Baro-Inertial Altitude 13

6 Present Position Latitude (MSP) 14

7 Present Position Latitude (LSP) 14

8 Present Position Longitude (MSP) 15

9 Present Position Longitude (LSP) 15

10 Pitch 7

11 Roll 8

12 True Heading N/A

13 Platform Azimuth 104

14 Wander Angle 36

15 Magnetic Heading N/A

16 North-South Velocity 10

17 East-West Velocity 11

18 Vertical Velocity 12

19 Ground Speed N/A

20 North-South Acceleration 16

21 East-West Acceleration 17

22 Vertical Acceleration 18

Note that where N/A appears in the Output column this means that the

word is not used in the simulation.
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Table A.3 Response to Command Word #2

Word P Word Specification Ref)Input

I Present Position Latitude (MSP) 60

2 Present Position Latitude (LSP) 60

3 Present Position Longitude (MSP) 61

4 Present Position Longitude (LSP) 61

Note that Inputs 60 and 61 are identical to Outputs 14 and 15. Refer to

Table A.9 and Table A.10 for the formats.
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Ta'le A.4 Response to Command Word #24

Word Word Specification Ref Output

1 INU Status Word 6

2 Time Tag Body Rate (4,5,6) 99H

3 Magnetic Variation N/A

4 Roll Rate 34

5 Pitch Rate 33

6 Yaw Rate 35

7 Roll Angle Acceleration N/A

8 Pitch Angle Acceleration N/A

9 Yaw Angle Acceleration N/A

10 Longitudinal Acceleration N/A

11 Lateral Acceleration N/A

12 Normal Acceleration N/A

13 Align Status N/A

14 INU Vendor Ident N/A

Note that an N/A in the output column means that the word is not

applicable to the simulation.
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A.2 Word Formats

Table A.5 Roll and Pitch Word Formats

_ Output #7 Pitch _ Output #8 Roll

P 16 P 16

15 +0.0054931640625 15 +0.0054931640625

14 +0.0109R6328125 14 +0.010986328125

13 +0.02197265625 13 +0.02197265625

12 +0.04394531250 12 +0.04394531250

11 +0.08789062500 11 +0.08789062500

10 +0.17578125000 10 +0.17578125000

9 +0.35156250000 9 +0.35156250000

8 +0.70312500000 8 +0.70312500000

7 +1.40625000000 7 +1.40625000000
6 +2.81250000000 6 +2.81250000000

5 +5.62500000000 5 +5.62500000000

4 +11.2500000000 4 +11.2500000000

3 +22.5000000000 3 +22.5000000000

2 +45.0000000000 2 +45.0000000000

i +90.0000000000 1 +90.0000000000

0 -180.00000000000 0 -180.00000000000

Bit Value Degrees Bit Value Degrees
Positive Nose Up Positive Right

Wing Down
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Table A.6 True Heading and N-S Velocity Word Formats

Output #9 True Output #10 N-S
_____Heading Velocity

P 16 P 16

15 +0.0054931640625 15 +0.125

14 +0.010986328125 14 +0.25

13 +0.02197265625 13 +0.5

12 +0.04394531250 12 +1

11 +0.08789062500 11 +2

10 +0.17578125000 10 +4

9 +0.35156250000 9 +8

8 +0.70312500000 8 +16

7 +1.40625000000 7 +32

6 +2.81250000000 6 +64

5 +5.67500000000 5 +128

4 +11.2500000000 4 +256

3 +22.5000000000 3 +512

2 +45.0000000000 2 +1024

1 +90.0000000000 1 +2048

0 -180.00000000000 0 -4096

Bit Value Degrees Bit Value ft/sec
Positive Clockwise North Positive
from True North
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Table A.7 E-W and Vertical Velocity Word Formats

Output #11 E-W Output #12
Velocity Vertical

Velocity

P 16 P 16

15 +0.125 15 +0.0625

14 +0.25 14 +0.125

13 +0.5 13 +0.25

12 +1 12 +0.5

11 +2 11 +1

10 +4 10 +2

9 +8 9 +4

8 +16 8 +8

7 +32 7 +16

6 +64 6 +32

5 +128 5 +64

4 +256 4 +128

3 +512 3 +256

2 +1024 2 +512

1 +2048 1 +1024

0 -4096 0 -2048

Bit Value ft/sec Bit Value ft/sec
East Positive Positive Up
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Table A.8 Baro-Inertial Altitude and Time Tag Word Formats

Output #13 Baro- Output # 99
Inertial Altitude A,B,C,H Time Tag

P 16 P 16

15 +2 15 50

14 +4 14 100

13 +8 13 200

12 +16 12 400

11 +32 11 800

10 +64 10 1600

9 +128 9 3200

8 +256 8 6400

7 +512 7 12800

6 +1,024 6 25600

5 +2,048 5 51200

4 +4,096 4 102400

3 +8,192 3 204800

2 +16,384 2 409600

1 +32,768 1 819200

0 -65,536 0 1638400

Bit Value ft Bit Value
Positive Up from Microseconds

Sea Level

Note: Total value is offset by +32,768 ft

ie. +50,000 ft (actual) is represented by +17,232 ft (data)
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Table A.9 Present Position Latitude Word Format

Output #14 Most Output #14 Least

Significant Word Significant Word

P 16 P 16

15 +0.0054931640625 15 +8.3819031715e-8

14 +0.010986328125 14 +1.67638063430e-7

13 +0.02197265625 13 +3.35276126861e-7

12 +0.04394531250 12 +6.70552253723e-7

1i +0.08789062500 11 +1.341104507446e-6

10 +0.17578125000 10 +2.682209014892e-6

9 +0.35156250000 9 +5.364418029785e-6

8 +0.70312500000 8 +1.072883605957e-5

7 +1,40625000000 7 +2.1457672119141e-5

6 +2.81250000000 6 +4.2915344238281e-5

5 +5.62500000000 5 +8.5830688476565e-5

4 +11.2500000000 4 +1.71661376953125e-4

3 +22.5000000000 3 +3.43322753906250e-4

2 +45.0000000000 2 +6.86645507812500e-4

1 +90.0000000000 1 +1.37329101562500e-3

0 -180.00000000000 0 +2.7465820312500e-3

Bit Value Bit Value Degrees

Degrees North Latitude
Positive
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Table A.10 Presen: Position Longitude Word Format

Output #15 Most Output #15 Least
Significant Word Significant Word

P 16 P 16

15 +0.005493164t625 15 +8.38190317159-8

14 +0.010986328125 14 +1.676380634309-7

13 +0.02197265625 13 +3.35276126861e-7

12 +0.04394531250 12 +6.70552253723e-7

11 +0.0F'89062500 11 +1.341104507446e-6

10 +0.17578125000 10 +2.682209014892e-6

9 +0.35156250000 9 +5.364418029785e-6

8 +0.70312500000 8 +1.072883605957e-5

7 +1,40625000000 7 +2.1457672119141e-5

6 +2.81250000000 6 +4.2915344238281e-5

5 +5,62500000000 5 +8.5830688476565e-5

4 +11.2500000030 4 +1.71661376953125e-4

3 +22.5000000000 3 +3.43322753906250o-4

2 +45.0000000000 2 r6.86645507812502e-4

1 +90.0000000000 1 +1.37329101562500e-3

0 -180 OC O0000soZ 0 +2.7
4
65820312500e-3

Bit Value Bit Value Degrees
Degrees II North Latitude

_ __ Positive
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Table A.11 N-S and E-W Acceleration Word Formats

Output #16 N-S Output #17 E-W
Acceleration Acceleration

P 16 P 16

15 +0.0078125 15 +0.0078125

14 +0.015625 14 +0.015625

13 +0.03125 13 +0.03125

12 +0.0625 12 +0.0621

11 +0.125 11 +0.125

10 +0.25 10 +0.25

9 +0.5 9 +0.5

8 +1.0 8 +1.0

7 +2.0 7 +2.0

6 +4.0 6 +4.0

5 +8.0 5 +8.0

4 +16.0 4 +16.0

+32.0 3 +32.0

2 +64.0 2 +64.0

1 +128.0 1 +128.0

0 -256.0 0 -256.0

Bit Value ft/s 2  Bit Value ft/s 2

North Positive East Positive

Note: When acceleration exceeds range of word, the output shall stay at

maximum until acceleration returns to within range.

Note: lg sensed is transmitted as zero.
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Table A.12 Vertical Acceleration and Wander Angle Word Formats

Output #18 Output #36

Vertical Wander Angle
Acceleration

P 16 P 16

15 +0.015625 15 +0.0054931640625

14 +0.03125 14 +0.010986328125

13 +0.0625 13 +0.02197265625

12 +0.125 12 +0.04394531250

11 +0.25 11 +0.08789062500

10 +0.5 10 +0.17578125000

9 +1.0 9 +0.35156250000

8 +2.0 8 +0.70312500000

7 +4.0 7 +1.40625000000

6 +8.0 6 +2.81250000000

5 +16.0 5 +5.62500000000

4 +32.0 4 +11.2500000000

3 +64.0 3 +22.5000000000

2 +128.0 2 +45.0000000000

1 +256.0 1 +90.0000000000

0 -512.0 0 -180.00000000000

Bit Value ft/s 2  Bit Value Degrees
Positive Up Positive Counter-

Clockwise True

North to Y axis

Note: When acceleration exceeds range of word, the output shall stay at

maximum until acceleration returns to within range.

Note: ig sensed is transmitted as zero.
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Table A.13 Platform Azimuth and INS Status Word Formats

Output #104 Output #6 INS
Platform Azimuth Status Word

P 16 P 16

15 +0.0054931640625 15 Holding Brake
Select

14 +0.010986328125 14 Operational Mode

13 +0.02197265625 13 Operational Mode

12 +0.04394531250 12 Operational Mode

11 +0.08789062500 11 Align Hold

10 +0.17578125000 10 Taxi Hold

9 +0.35156250000 9 Kalman Update

Reject

8 +0.70312500000 8 Kalman Update
Complete

7 +1.40625000000 7 Filter Background
I Busy

6 +2.81250000000 6 Degraded Nay

5 +5.62500000000 5 Bit Acknowledge

4 +11.2500000000 4 Baro-Inertial

Altitude Valid

3 +22.5000000000 3 Time Tag Valid

2 +45.0000000000 2 Battery Valid

1 +90.0000000000 1 Attitude Valid

0 -180.00000000000 0 INU' Valid

Bit Value Degrees
Positive Clockwise

from Y axis

Note: Op Mode (bit 12,13,14)--0 0 0 STANDBY, 0 0 1 NAV, 0 1 0 GC Align,

0 1 SH Align, 1 0 1 INFLIGHT Align
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Appendix B: LN-94 Truth Model Definition

This appendix provides an overview of the 93-state error model

defined in the Litton CDRL [17].

Table B.l INS Truth Error Model Partition 6x1

State Name Definition

1 Sax  x component of position error-true
to computer frame

2 60y y component of position error-true
to computer frame

3 60Z z component of position error-true
to computer frame

4 x component of platform tilt
error-true to platform frame

5 y component of platform tilt
error-true to platform frame

6 z component of platform tilt
error-true to platform frame

7 6V1  x component of error in
computed velocity

8 6VY y component of error in
computed velocity

9 6Vz z component of error in
computed velocity

10 6h error in vehicle altitude
above reference ellipsoid

11 6hL error in lagged inertial
altitude

12 6S3  error in vertical channel

13 6S4 error in vertical channel
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Table B.2 INS Truth Error Model Partition Sx 2

State Name Definition

14 bxC x component of gyro correlated
drift rate

15 byC y component of gyro correlated
drift rate

16 bz2  z component of gyro correlated
drift rate

17 VxC x component of accel and velocity
I quantizer correlated noise

18 VyC y component of accelerometer and
velocity quantizer correlated
noise

19 Vzc z component of accelerometer and
velocity quantizer correlated
noise

20 6g. x component of gravity error

21 6gy y component of gravity error

22 6g. z component of gravity error

23 6hc barometer correlated bias noise
error

24 bxt x component of gyro trend

25 byt  y component of gyro trend

26 bzc z component of gyro trend

27 Vxt x component of accel trend

28 Vyt y !ompnrent of accel trend

29 Vzt z component of accel trend
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Table B.3 INS Truth Error Model Partition Sx 3

State Name Definition

30 b. x component of gyro drift rate
repeatability

31 by y owpriant of gyro drift rate

repeatability

32 bz z component of gyro drift rate
repeatability

33 Sgx x component of gyro scale factor
error

34 SBY y component of gyro scale factor
error

35 Sgz z component of gyro scale factor
error

36 Xi x gyro misalignment about y

37 X2 y gyro misalignment about x

38 X3 z gyro misalignment about x

39 V1 x gyro misalignment about z

40 V 2  y gyro misalignment about z

41 V 3  z gyro misalignment about y

42 D., x gyro scale factor non-linearity

43 Dry y gyro scale factor non-linearity

44 Dzzz  z gyro scale factor non-linearity

45 SQbx x gyro scale factor asymmetry
error

46 SQby y gyro scale factor asymmetry
error

47 SQbz z gyro scale factor asymmetry
error
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Table B.4 INS Truth Error Model Partition 6x4

State Name Definition

48 Vb. x component of accelerometer bias
repeatability

49 Vby y component of accelerometer bias
repeatabiliiy

50 Vb. z component of accelerometer bias
repeatability

51 SA x,y,z components of accelerometer
52 SAY and velocity quantizer scale
53 SAz factor error

54 SQA x,y,z components of accelerometer

55 SQAY and velocity quantizer scale
56 SQAz factor asymmetry

57 f= coefficient of error proportional
to square of measured acceleration

58 fy, coefficient of error proportional
to square of measured acceleration

59 fzz coefficient of error proportional
to square of measured acceleration

60 fY coefficients of error proportional
61 fxz to products of acceleration along
62 f and orthogonal to accelerometer
63 fyz sensitive axis
64 fzx

65 fzy

66 P1 x accel misalignment about z

67 P2 y accel misalignment about z

68 A 3  z accel misalignment about x

69 a3  z accel misalignment about y
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Table B.5 INS Truth Error Model Partition 6x5

State Name Definition

70 Vzq x,y,z components of

71 Vyq accelerometer bias thermal
72 Vgq transient

73 bzq x,y,z components of initial
74 byq gyro drift rate bias thermal
75 bzq transient

Table B.6 INS Truth Error Model Partition 6x6

State Name Definition

76 Fryz  x gyro compliance terms
77 Fr
78 FXYX
79 Fxzy
80 Fx2 2
81 Fxzx

82 Fyzx y gyro compliance terms

83 Fyzz
84 Fyzy
85
86 Fy
87 Fy

88 Fz2 Y z gyro compliance terms
89 Fz=
90 Fzx z
9i F" X
92 FzY
93 Fzy z
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Appendix C: LN-94 Dynamic and Noise Matrices

This appendix provides a summary of the contenZ of the dynamic

matrix and the noise matrix of Lhe 93-state LN-94 truth model.
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Appendix D: Programming Flow Charts

This appendix supplies the reader with program flow charts. These

charts outline the program flow used in the more critical/complex

functions in the simulation. For specific coding techniques the reader

should refer to the source code.

For all functions except MAIN, there are two functions outlined in

the upper left corner of the first page of a flow chart. The function

to the far left is the calling function and the next function is the one

being called and displayed as a flow chart. For the function MAIN, only

the function MAIN is shown at the upper left of the first page of the

flow chart.
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Appendix E: Program Functions

Chapter 3 provides the global overview of the simula ion p-ogram.

In this appendix, the program is broken down into functior; as they

relate to the above mentioned modules and how they relate to other

program functions. Refer to Table E.A and Table E.2 for k breakdown of

the relationship between the functions and the modules. Tie invent is

not to provide code descriptions, but rather to describe tie general

operation of the function. The reader is referred to the )rogram source

code for code level descriptions.

The INSLN94 executable program consists of the INSLN94 scurce

code which contains the MAIN function and is linked with !ive object

modules:

1. SETUP.OBJ
2. PROCESS.OBJ
3. MCDRVL.OBJ
4. INS INT2.DBJ
5. CLKT10.OBJ

There are 35 functions written specifically for the simulation not

including the MAIN. In addition the program uses 10 commercially

developed functions. Specific discussion of the commercially developed

functions is not provided other than to indicate where they are used and

then reference the applicable documentation.

For simplicity, the functions are presented in alphabetical order.

The function is identified by name followed by the name of the host

program and any calling function names. A description of function

operation then follows. First, a look at functions written specifically
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Table E.l Functions Contained in INSLN94.C

INSLN94.C f
Bitoff Biton Calc_TimeTag

Derivative DisplayLatLong Extract

Hundred Ms Initialize INS Error Include

Insert Integrate Keyboard

MatrixOps ModeChangeTimer Model

MsgEqual MsgComdProc Noise

Propagate RandomNumber Trajectory

Update ValidMsgNumber Write Data

Table E.2 Functions Contained in Object Modules

SETUP.C I PROCESS.C CLKT10.ASM jINSINT2.ASM

Introduction Process CMD 1 enbtim init1553

Disp -.yScreen ProcessCMD 2 distim remhdlr

Plot Results ProcessCMD 24

test 1553

for the simulation.

E.A Program Specific Functions

E.1.1 Bitoff Host Program: INSLN94.C
Calling Function(s): ProcessCMD 1

Calling Convention: Bitoff(unsigned int,int)

Function Bitoff is uscd to set specified bits in a word to zero.

A word of unsignee int is passed together with a bit mask value to the
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function. The word value is AND'd with the compliment of the mask

value, and the result is returned with the designated bit equal to zero.

The mask values are defined in INSDEF.H and are simply hex values which

highlight the bit in question. For example the masked value of bit one

would be 0x800, where bit one is the most significant bit.

E.1.2 Biton Host Program: INSLN94.C
Calling Function(s): ProcessCMD_1

Calling Convention: Biton(unsigned intint)

Biton works in a similar fashion to Bitoff except the object is to

set the masked bit to a value of one. This is achieved by using a

bitwise exclusive OR of the word value and the mask.

E.1.3 CalcTime Tag Host Program: INSLN94.C
Calling Function(s): ProcessCMD_1

Calling Convention: CalcTimeTag(unsigned int)

The time tag is defined to be the difference between the process

start time, and the time the sync mode command is received from the bus.

The sync word is passed when the bus interface card is initialized in

the function Initialize. The units of the time tag are in microseconds,

with the least significant bit or truncation point at 50 microseconds.

In order for the time tag to fit into a 16 bit entity, the calculations

of time must be limited. In other words, the intermediate values of

time must be limited to 419 in order to achieve a value that will fit

into the word size when called for.

The difference between process time and sync time is calculated

and from this value, microsecond units are derived, and the value
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truncated to the nearest 50 microsecond. Time is then returned to the

calling function.

E.1.4 Derivative Host program: INSLN94.C
Calling function(s): Integrate

Calling Convention: Derivative(double[])

Derivative is called by Integrate to evaluate the system

derivative at time t. The system derivative is defined as the dynamic

matrix F post multiplied by the state vector. To evaluate the

derivative, the dynamic matrix and the state vector must be updated to

time t.

To achieve this, the state vector is set to the previous

integration solution, and then the function Trajectory is called to

update the navigation parameters. Using the updated parameters Model is

called to evaluate the system dynamic matrix at time t. Derivative then

calls Matrix Ops to perform the matrix multiplication. The new system

derivative is then passed back to Integrate to continue propagation of

the model.

Note that the stochastic white noise, which forms a part of the

model differential equation, is dealt with in another function and noise

is injected as per the initial conditions.

E.1.5 DisplayLatLong Host program: INSLN94.C
Calling function(s): Process CMD 1

Process CMD_2

Update

Calling Convention:

DisplayLatLong(unsigned int,unsigned int,int,int,int)
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DisplayLat Long is called to display the present position lat and

long on the simulation screen. The most significant and least

significant words of either lat or long are passed to the function along

with the screen position in row/column format. Additionally, the type

LAT or LONG is passed to the function.

Using a shift operation, the MSP and LSP are combined into one

word. The value is checked for positive or negative value and if

negative, a 2's compliment operation is performed and the sign value

set. The value is then scaled according to FNU 85-1 and the degrees,

minutes, and 1000th of minutes extracted. The direction and value are

then displayed to the screen based on the type that has been passed to

the function. Note that by convention, N latitude and E longitude are

positive.

E.1.6 Display-Screen Host program: SETUP.C
Calling function(s): Main

Calling Convention: Display Screen()

This function makes use of the Essential Software C Utility

Library functions to manipulate screen color, cursor position, and

formatted output to set the computer terminal screen for use of the

simulation. The function also calls WriteData to display the initial

data in the input message.

This function is called by Main at the beginning of the program to

set the screen and then all other screen manipulations are done by other

functions as required.

E.1.7 distim Host program: INSINT2.ASM
Calling function(s): Main
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Calling Convention: distim()

This function is written in assembly language and is used at the

end of the program to disable the simulation timer and reset the

interrupt handler to operate at 18.2 Hz.

E.1.8 enbtim Host program: INSINT2.ASM
Calling function(s): Main

Calling Convention: enbtim(int far *)

This function sets up a 100 Hz clock for timing in the simulation.

The handler for DOS interrupt 0 is replaced and the count of timer 0 is

decreased to the value such that the timer interrupt occurs every 10

msec. The original interrupt handler is called at 18.2 Hz.

This function also stores a pointer to a count value, which the

interrupt handler will increment every time it is called. This pointer

is monitored to calculate the simulation time.

E.1.9 Extract Host program: INS LN94.C

Calling function(s): Insert

Calling Convention: Extract(unsigned int,int,int)

A word, a bit start, and an end location are passed to the

function. Taking advantage of bitwise left and right shifts, the

function Extract removes bits from a specified word starting at the

designated start bit to the designated end bit. All undesignated bits

are shifted out of the word and the remaining value is passed back to

the calling routine.

E.1.10 HundredsMs Host Program: INSLN94.C

Calling Function(s): Main

Calling Convention: HundredMs()
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This function is the basis for the timing in the simulation. The

timer is set to interrupt at 10 ms intervals. HundredMs tracks the 10

ms count and when 100 ms has past, the function will return TRUE.

Otherwise the function will return FALSE. This type of timing sequence,

in essence, means that the Main function can be operated based on

increments of 100 ms.

Since the maximum 10 ms count for a 16 bit unsigned integer is

65535 the maximum simulation time would be slightly greater than 10

minutes. To alleviate this restriction HundredMs tracks a rollover

count. When the 65535 limit is reached a count of 65535 is added to the

time for computation. This technique is used when tracking the

difference between real time and processing time. This is a debugging

technique and is used in the function Update. For program development

this time is shown on the screen.

E.1.11 init1553 Host Program: CLKT10.ASM

Calling Function(s): Initialize

Calling Convention: initl553(int far *. it far *,int far *,int)

This function initializes the Ballard PC1553 interface board to RT

mode and sets the RT address. An interrupt handler specifically used

for the Ballard board is also installed. When a synchronize mode code

is received, the handler will set a variable to current time which in

turn synchronizes the board with the bus. In this function, this

variable is initially set to zero.

E.1.12 Initialize Host Program: INSLN94.C

Calling Function(s): Main

Calling Convention: Initialize()
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The function, as the name implies, is called by Main to initialize

program variables. It also initiates the simulation timer using enbtim

and it initializes the PC1553 interface board using initl553. The

function sets the initial conditions of the state vector and sets the

operating parameters for the function Integrate. The function also

initializes the 1553 message values to zero and opens the appropriate

files for storage of data as requested in the program setup.

E.1.13 INSErrorInclude Host Program: INSLN94.C

Calling Function(s): Main

Calling Convention: INSErrorInclude()

INSErrorInclude correlates true trajectory data with the INS

errors that are propagated in the simulation. By convention INS-

indicated information is the difference between true trajectory and INS

errors. This function performs the operations necessary to produce INS-

indicated values. It also makes the appropriate transformations to

provide information in the proper reference frame. It is also the point

in the program where the INS-indicated values or the error state values

are stored to file.

Specifically, the function calculates the errors in latitude,

longitude, wander angle, velocity, acceleration, pitch, roll, and

platform azimuth, and pitch, roll, and yaw rates. These calculation are

made from the solution vector of Integrate and transformed into the

proper reference frame. The difference calculation is made between the

true trajectory and INS error and as designated by the user, either the

error states or the whole states are stored in files.
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E.1.14 Insert Host Program: INSLN94.C

Calling Function(s): Keyboard

Calling Convention: Insert(int,unsigned int,int,int)

Function Insert pushes a designated set of bits or value into an

integer word. These two parameters, as well as the start and end

position within the integer word, are passed to the function. This

function utilizes Extract to remove start-i bits from the word and

places them in a temporary word. The value or designated bits are then

placed in the temporary word and Extract is used to place the end bit+l

bits of the word into the temporary word. The new word is passed back

to the calling function.

E.1.15 Integrate Host Program: INSLN94.C

Calling Function(s): Propagate

Calling Convention: Integrate(double)

Integrate is the most complex function in the program and is the

function responsible for propagating the system model and providing the

resulting INS errors. Integrate finds the solution to the system

differential equation from the present time to the end time which is

passed by the calling function. It uses a fifth-order Kutta-Merson

routine with automatic step sizing to achieve this solution.

Integrate first checks to ensure variables declared in Initialize

are within the function limits. If this is not the case the function

will terminate and the simulation will terminate. The parameters that

are checked are start time versus end time; time cannot propagate

backwards. The maximum step size is checked and must be greater than

minimum step size, and the control flag can only be zero or one. An
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additional parameter that is provided but not checked is the error

tolerance used in the error checking phase of the program. The control

flag that is indicated refers to checkstep which when set will control

step size to be either automatic step control or fixed step.

If integration time (same as present time) is very close to end

time the function uses the Euler method of integration to obtain the

solution. Otherwise, the function increases the step size and uses the

Kutta-Merson equations to find the solution. If integrate time is not

too small the routine moves directly to the Kutta-Merson equations. The

Kutta-Merson equations, as outlined in Chapter 2, involve calling

Derivative to evaluate the system derivative for time t. Time is

segmented into step fractions of 1/2, 1/3, 1/6, and 1/8 in addition to

time zero.

Once the solution has been obtained, Integrate uses an error

checking routine to determine whether the solution is viable. The

function evaluates the difference between Y4 and y5 and computes an

error estimate. If no error is calculated, the function will increase

step size for the next iteration. If a successful step with some error,

the function evaluates whether an increase in step size is viable

without violating error tolerances. If an unsuccessful step the

function will reduce the step size and try re-evaluating. If under the

present parameters a solution can not be achieved, the function will

terminate and return a value of the component which can not be evaluated

within parameters.

After a successful step and appropriate step size, the function

evaluates whether at the end time or at step time. If initial
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conditions dictate noise at each step the function will return to

Propagate to inject noise into the solution. If not at step and not at

end time the function will continue integration.

In all cases when the function terminates, the status of the

integration is returned for error handling. Refer to Section 3.3.1 for

more detail on this function.

E.1.16 Introduction Host Program: SETUP.C
Calling Function(s): Main

Calling Convention: Introduction()

This function interrogates the user at the commencement of the

program asking the user to define a number of parameters. It opens with

an overview of the simulation and its opetation. This overview may be

omitted at the discretion of the user. The user is asked to define the

type of trajectory input for the flight, the type of states to track and

store, the length of the flight, the rate of data collection, and then

whether to carry on with the simulation as defined. The user is given

the opportunity to make changes to the above parameters before

commencing or exiting the program if desired.

The function uses formatted input and output to control the

question and answer format and includes fail-safe techniques if the user

inputs unexpected information.

E.1.17 Keyboard Host Program: INSLN94.C
Calling Function(s): MsgCmdProc

Calling Convention: Keyboard(int)

This function is called by Msg CmdProc to accept and interpret

keyboard inputs. It accepts all valid inputs as defined by the
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simulation. Specifically it accepts the ESC key, D01, 101, 124, Fl, F2,

F3, and F4. In the case of the function keys Keyboard sets the

operational mode of the INS, uses the function Insert to set the INS

status word, and in the case of NAV mode sets the start time for

navigation based on the system clock. A flag is also set to allow the

program to enter the function ModeChangeTimer when an operational mode

changes. When the ESC key is struck the exit flag is set and on return

the simulation will terminate.

In the case of 101 and 124 the function processes each character

separately and completes operation based on a CR. ValidMsgNum is

utilized to check the validity of these inputs. If valid the number is

accepted. If invalid the computer bell sounds and an invalid message is

printed to screen.

An integer value is returned from this function. The input status

(CR or no CR), message id (D or I), and the message number are OR'd

together and this integer is analyzed by MsgCmdProc to determine

keyboard inputs. Note that single key inputs such as ESC are not

interpreted directly by MsgCmd Proc but rely on flag setting for their

interpretation.

E.1.18 MatrixOps Host Program: INSLN94.C
Calling Function(s): Derivative

Noise

Calling Convention:

Matrix Ops(char,double[][],int,doublel),int,doublel],int)

MatrixOps is called to multiply two matrices together.

Permissible matrices are a two dimensional matrix post multiplied by a
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one dimension vector. The operation type is passed to the function and

the function uses a switch decision loop to select the operation. If a

request other than "*" is requested the function and program will

terminate. The two dimensional matrix and its column dimension, the

single dimension vector and its row dimension, and the resultant matrix

and its row dimension are passed to the routine. The function

initializes the resultant matrix to zero and then does a row by column

multiply of the two matrices.

E.1.19 Mode Change_Timer Host Program: INSLN94.C
Calling Function(s): MsgCmdProc

Calling Convention: Mode_Change Timer()

The simulation does not perform alignments directly. Instead a

timing loop is initiated to simulate alignment. This routine is entered

from MsgCmdProc anytime that GC align, SH align, or INFLIGHT align are

called for from the keyboard. The function uses a switch decision loop

to set the start time relative to simulation time, and sets the

countdown flag which indicates countdown in progress. It also changes

the mode on the simulation screen.

E.1.20 Model Host Program: INS_LN94.C
Calling Function(s): Derivative

Calling Convention: Model()

This function is called by Derivative and it provides an updated

version of the system dynamic matrix and process noise matrix for use in

the next integration step. This function is called for the computation

of each Kutta-Merson equation.
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The function first equates the model variables with the latest

trajectory data, and then computes the vertical gains. The ECEF-to-

true-frame transformation and the sensor-to-true-frame transformations

are computed. Elliptical gravity, craft rate, earth rate, platform

angular rate, earth radius, and linear velocity magnitude are also

computed based on the trajectory data. Non-zero components of the 23-

state dynamic matrix are updated as well as the components of the

process noise matrix.

E.1.21 MsgEqual Host Program: INSLN94.C
Calling Function(s): ProcessCMD_2

Update

Calling Convention: MsgEqual(unsigned[],unsigned[],int)

This function is called to help reduce the computation overhead by

not computing if the message of concern has not changed. The function

does a component-by-component comparison of two messages or arrays and

returns a FALSE if components are different, else a TRUE is return. The

first difference that is encountered will return a FALSE, which

eliminates the need of checking the entire array.

E.1.22 MsgCmdProc Host Program: INSLN94.C
Calling Function(s): Main

Calling Convention: MsgCmdProc()

This function is called by Main to handle any inputs from the

keyboard. It processes the return from Keyboard, and if a CR has been

input, the function will extract the ID of the message requested and its

number. Once identified, the message number requested is updated to the

screen. In addition, if the request is for the input message,
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WriteData is called to update the screen. The function Update handles

all output messages from this point.

The function is used primarily to interpret and action message

changes. However, if key input is a function key requesting a mode

change other than NAV, the function will call ModeChangeTimer to start

the alignment timing process.

E.1.23 Noise Host Program: INS LN94.C
Calling Function(s): Propagate

Calling Convention: Noise()

This function is called to provide the white Giassian noise vector

that is injected into the system model. The function calls

Random_Number to generate a vector of Guassian random numbers. Since

the process noise matrix is diagonal, it is not necessary to make any

computations such as Cholesky square root and since G is identity, the

approximation that this function would normally implement, Qd - GQGAt,

now becomes Qd - Q~t. Delta t comes from Integrate where this time

represents the last time Qd was computed. Utilizing Matrix_Ops, the

function post multiplies Qd by the Guassian random number vector and the

result is a vector with statistics N[O,Qd].

E.l.24 PlotResults Host Program: SETUP.C
Calling Function(s): Main

Calling Convention: PlotResults()

This function is called at the end of the simulation to give the

user the opportunity to plot any data that may have been collected

during the simulation. Thp plotting routine, EZPLOT, is invoked when

indicated by the user. If the user chooses to plot results on return
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from EZPLOT, the function will query the user as to whether to restart

the simulation or exit the program. If plotting is not desired, the

user may restart the simulation or exit the program.

The function uses Essential Software libraries to manipulate the

scieen, and formatted input/output to query the user.

E.1.25 ProcessCMD_1 Host Program: PROCESS.C
Calling Function(s): Main

Calling Convention: ProcessCMDl()

This function provides the MILSTD 1553B formatted data that is

output to the bus controller. It provides the response for command word

#1 of the FNU 85-1 specification. Refer to Appendix A for the words and

formats that are transmitted by the simulation.

The function provides processing of word I of the response to

command word #1, which is the INS status word. If the mode selected is

an alignment mode the function sets the appropriate bits to indicate the

mode. In addition, it monitors the progress of the alignment and

dispiays ATT RDY, DEG RDY, and NAV RDY as tin. progresses.

All subsequent words are processed ,- F " ng the INS-indicated

solution from INSErrorInclude according to '.' FNU 85-1 specification

and outputting the results as an integer in hexadecimal form.

E.1.26 ProcessCMD_2 Host Program: PROCESS.C
Calling Function(s): Main

Calling Convention: Process_CMD_2()

ProcessCMD_2 is called by Main in response to command word #2 of

the FNU 85-1 specification. There are only four words, msp and lsp of

present position latitude and longitude. The function utilizes
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MsgEqual to check whether the position has changed since the last

process. If the position has changed the words in CMD_1 and CMD_2 are

set to new position. DisplayLat Long and WriteData are called to

display the results to the screen.

E.1.27 ProcessCMD_24 Host Program: PROCESS.C
Calling Function(s): Main

Calling Convention: ProcessCMD_24()

In a similar fashion to ProcessCMD_1, this function processes the

applicable words in response to command word #24 of the FNU 85-1

specification. It does not specifically process the INS status word but

sets the status word for this function equal to the status word of the

ProcessCMD_1.

E.1.28 Propagate Host Program: INSLN94.C
Calling Function(s): Main

Calling Convention: Propagate(double)

Propagation is the coordinating function for propagation of the

system model. The function passes end time to and calls Integrate.

After Integrate returns, integration status is checked for integration

error. If there is an error, Propagate terminates the program and an

error message is displayed to the screen. If no error, and if at end

time or at end step, the function computes At and calls Noise for

process noise injection into the model. After noise injection, the

state vector is set to the solution vector in preparation for the next

integration cycle. This process continues until at end time, at which

time Propagate returns to Main. Refer to Section 3.3 for a more

detailed discussion of this function.
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E.1.29 RandomNumber Host Program: INSLN94.C
Calling Function(s): Noise

Calling Convention: RandomNumber(int,unsigned int,int,double[])

RandomNumber provides a vector of QNUM random numbers to the

function Noise. It is seeded by system time at simulation start, and a

vector of random numbers of quantity SIZE is generated. A random number

is then generated to select one number from this vector. The function

then replaces the selected number with another random number.

Each number of the vector passed back to Noise is the sum of

twelve random numbers with 6.0 subtracted from that sum. This process

gives a vector of approximately Guassian numbers with statistics of

N[0,1].

E.1.30 remhdlr Host Program: CLKT1O.ASM
Calling Function(s): Main

Calling Convention: remhdlr()

This function removes the interrupt handler installed by init1553

and replaces it with the interrupt handler present before initialization

of the simulation.

E.1.31 test_1553 Host Program: SETUP.C
Calling Function(s): main

Calling Convention: test_1553()

This function verifies the presence of a Ballard PC1553-2

interface board in the host computer. It writes test values to several

locations in the on-board dual-port memory. It then reads them back to

verify their values. If the values are not consistent, the function
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assumes no board is present. If no board is present the function

returns FALSE.

This function uses various library routines from the Ballard

PC1553 interface program. Readers are referred to Ballard PC1553 User's

Manual [5] for details on these functions.

E.1.32 Trajectory Host Program: INS LN94.C
Calling Function(s): Derivative

Calling Convention: Trajectory()

Function Trajectory is called by Derivative and provides the

updated trajectory data so that the system model can be updated prior to

computing its derivative.

For the static navigation case, the trajectory data is unchanged

from the start to the end of the navigation period. Therefore, the data

is coded into the function and is accessed if static navigation is

requested. If a flight trajectory is requested, function Introduction

opens the applicable trajectory data file for reading and the data is

read from the file by Trajectory.

E.1.33 Update Host Program: INSLN94.C
Calling function(s): Main

Calling Convention: Update()

Update is used to keep the data on the simulation screen current.

It updates the operational mode and status of alignment; ATT RDY, DEG

RDY, and NAV RDY. It also uses DisplayLat Long to update present

position lat and long and displays simulation time. Msg_Equal is used

to minimize the computation load when the present position has not

change. Update then uses a switch decision loop to determine the output
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message and calls WriteData to keep the screen data of the message

current.

E.1.34 ValidMsgNum Host Program: INSLN94.C
Calling Function(s): Keyboard

Calling Convention: ValidMsgNum(int,int)

Valid MsgNum is called by Keyboard to validate keyboard input

when the user tries to change the messages on the simulation screen.

The message ID and the message number are passed to the function. If

the corresponding ID and number are valid, TRUE is returned to the

calling function, else FALSE is returned. ID and number must coincide.

In other words a user can not input D24 versus 124. Each component of

the message ID and number is confirmed as it is entered so the program

must include all valid numbers. For example, in 124 the ID of I and the

number 2 and 24 must be valid inputs.

E.1.35 Write-Data Host Program: INSLN94.C
Calling Function(s): DisplayScreen

Initialize

Process CMD_2
Update

Calling Convention: WriteData(unsigned int[],int,int)

WriteData prints the contents of input/output messages in the

format that is established for the simulation screen. Only the modified

words are updated.

The message array, the length of the array, and the type of

message (input/output) are passed to the function. The type designates

the cursor position when preparing to update. The length sets the

duration of the update cycle. All the messages vary in the number of
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words and it makes no sense to update beyond message length. The

function sets the position of the cursor and then outputs a hexadecimal

number to the appropriate position on the screen.

E.2 Commercially Developed Functions

The following is a summary of the functions utilized from

commercially available software packages. As mentioned previously,

details are not provided for these functions except to say what they do

and indicate where to get more detail.

E.2.1 Essential Software C Utility Library

This library, SLIBES.LIB, is linked with the program INSLN94.C

and the following functions were utilized:

1. border--set screen border to specified color

2. clreol--clear to end of current line

3. clrscrn--clear current screen

4. clscolor--set current screen to specified color

5. colptrc--print character in specified color

6. colrptrf--print a string in formatted mode

7. colrprt.o--print a string in specified color

8. curlocat--locate the cursor by row and column

The reader is referred to the Essential Software C utility Library

reference manual [11].

E.2.2 Ballard PC1553 Functions

The following is a list of the functions utilized from the Ballard

Technology PC1553 software:
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1. readrtdwd--reads data from a PC1553 sub-address

2. writertdwd--writes data to a PC1553 sub-address

3. config--configures PC1553 by writing to the three control

registers

The reader is referred to the Ballard PC1553 Interface User's Manual

[5].
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Appendix F: Simulation Operator's Guide

This appendix will summarize system/hardware requirements and the

procedural steps to be taken when operating the LN-94 INS Simulation

program. The intent of this guide is not to outline the operation of

peripheral devices or operating systems. It is assumed the user has a

working knowledge of an IBM compatible personal computer and the DOS

operating system. It is also assumed that the user is familiar with the

operation of the DTI bus control software and the physical requirements

of the MILSTD 1553 bus connections. it is suggested that the user also

become familiar with the EZPLOT plotting routine User's Manual.

This guide will cover the computer system requirements, hardware

requirements, and the required configuration of the bus controller. A

step-by-step setup and operational procedure of the simulation is

provided.

F.1 System Requirements and Hardware

As indicated in Chapter 3, the simulation program is compiled to

take advantage of a 80387 or compatible coprocessor. In addition, the

system assumes a color monitor as the program addiesses the video card

for screen color manipulation. The minimum system requirements are, a

80386 computer with an 80387 coprocessor, and EGA/VGA color monitor. To

maintain the speed of the program the processor should be at least 20Mhz

and the system should have a hard drive. If no hard drive is present

and a floppy drive must be used, then the user should ensure that data
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storage rates are slow enough so as not to impact on the operation of

the program.

The program executable is approximately 50K in size, and as long

as sufficient RAM is available for the executable and a 7K stack, the

program should operate without problem. For storage of data, a typical

file in ASCII format, at a collection rate of 10 seconds for three

hours, uses approximately 70K of memory. The user should have some idea

of storage requirements prior to starting the simulation.

The simulation requires a Ballard PC1553-2 interface board

installed on the host computer bus. The DTI bus controller software is

to be installed in another PC, and the two computers interfaced via the

Ballard boards and the appropriate 1553 bus cabling and couplers. If

desired a printer can be interfaced to the program host computer to take

advantage of the plotting routine EZPLOT. EZPLOT only has drivers for

dot matrix printers and a good 24-pin dot matrix printer should be

sufficient for quality output. If a printer is not available, EZPLOT

outputs to the screen and files may also be transported to another

system for printing.

F.2 Simulation Setup

Where the executable is located on disk is not particularly

important. The only directory requirement is that the program must be

able to access a directory path, C:\UTILITY\EZPLOT, to store data files.

The plotting routine, EZPLOT.EXE, as well as the two trajectory files,

STRAIGHT.TRJ and FIGHTER.TRJ, must also be present in this directory.
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Boot the program host computer and go to the simulation directory.

At the prompt type INS_LN94. The next screen the user sees will have

the program title, version number, and programmer name. The program

will prompt the user by the question:

DO YOU WISH TO READ THE PROGRAM OVERVIEW? Y/N

The user enters Y(y) or N(n). It should be noted here that any required

inputs to screen prompts after this prompt must be follow by a CR. If

the user chooses to see the overview, three screens of literature will

be displayed giving the user a basic idea of the simulation capabilities

and operating procedures. If the user chooses not to see the overview

or following the overview, this prompt will appear:

SELECT THE TRAJECTORY YOU WISH TO USE:
(1) LITTON FIGHTER TRAJECTORY (TWO HOUR SIMULATION)
(2) STRAIGHT AND LEVEL TRAJECTORY (MAX 6 HOURS)
(3) STATIC NAVIGATION FROM AFIT (NO TIME LIMIT)

Selection of 1 or 2 will open the applicable trajectory file for

reading. Selection of 3 will set the navigation parameters to a

stationary condition. The next prompt will be:

DO YOU WISH TO TRACK ERROR STATES OR WHOLE STATES:
(1) ERROR STATES
(2) WHOLE STATES
(3) NO STATE TRACKING

Based on which states are selected, the user will see a list of those

states which will be tracked and stored. If no states are tracked, this

will be indicted on the screen as well. Type a CR and the next prompt

will be:

THE LENGTH OF YOUR NAVIGATION SESSION IN MINUTES IS:

The user inputs an integer representing the length of the session in

minutes. When making selection the user should remember the type of
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trajectory that was selected and the stipulated length of the

trajectory. The next prompt is:

IF YOU SELECTED STORAGE OF DATA, ENTER DATA COLLECTION
RATE IN SECONDS ELSE ENTER ZERO:

The user enters an integer value for time between data collection

points.

The next screen will give the user the opportunity to change any

of the previously selected parameters, carry on with the simulation, or

exit the simulation.

DO YOU WISH TO CHANGE ANY OF THE PARAMETERS YOU JUST SELECTED:
(1) TRAJECTORY
(2) STATES
(3) SESSION LENGTH
(4) TIME BETWEEN COLLECTION POINTS
(5) NO CHANGE
(6) EXIT PROGRAM

The user inputs the appropriate request. If the user chooses to

change a parameter, only that parameter prompt will be displayed and

then returned to the above screen. If the user chooses to exit the

program the DOS prompt will reappear. To carry on with the simulation

enter the selection for NO CHANGE.

F.3 Simulation Operation

When the user enters the simulation, the screen will change to the

formatted display necessary to show the information applicable to the

simulation. The present position should be zero latitude and longitude

and the input and output message should show zeros. At this point the

user should setup the 1553 bus before carrying on with any simulation

operation.
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The user should establish bus control with the DTI bus controller

software, Sceptre [13]. Set the bus controller to send present position

latitude and longitude to the simulation. The input is in accordance

with command word #2 in FNU 85-1 [3]. Refer to Table A.1 for details of

all the command words that the simulation responses to. The RT address

of the INS is 05h. The process is master to remote, sub-address 02h,

receive, and four data words. For present position the data words are:

lC4Ah msp latitude
iBOOh Isp latitude
C435h msp longitude
iFOOh Isp longitude

These represent the latitude and longitude of AFIT. Transmit the

command once, and the simulation screen should now read the AFIT present

position.

Return to the simulation and select one of the alignment modes as

per the list p:esented on the simulation screen. The system MUST be

aligned. If the user selects NAV before alignment, the NAV mode will be

displayed but the system will not propagate. After alignment (approx 10

seconds), the user may enter the NAV mode. The simulation will enter

the propagation mode and the input and output messages should begin to

change.

At this point, the user may wish to display results of the

simulation on the 1553 data bus. The two output messages that the

simulation will respond to are in response to command word #1 and

command word #24 both of which are outlined in Appendix A. Using the

parameters in Table A.1, the user can set the bus controller to receive

the data from the simulation.
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As the navigation proceeds the simulation will store results to

the EZPLOT directory. The simulation will navigate until the end of the

navigation session or until the user manually exits the program using

the ESC key. When the navigation session is terminated at the end of

the navigation time the following prompt is presented to the user:

YOUR XX MINUTE NAVIGATION SESSION IS COMPLETE

or if the simulation is terminated by the user, the following is

presented:

SIMULATION HAS BEEN TERMINATED PRIOR TO THE END OF NAV SESSION

In either case, the system will wait for a CR and then display the

following:

DO YOU WISH TO PLOT ANY OF YOUR RESULTS:
(1) YES
(2) NO EXIT PROGRAM
(3) NO RESTART SIMULATION

If the user selects 2 the program will terminate and the DOS prompt will

reappear. If the user chooses to restart the simulation, the sequence

in Section F.2 will start again. If plotting is selected the simulation

will turn control over to the routine EZPLOT. The user should refer to

the user's manual of EZPLOT to produce the plots desired. The routine

is self-explanatory and should not present any difficulties. For using

EZPLOT the file names used in the simulation are listed in Table F.l.

Once the user terminates EZPLOT control is returned to the

simulation and the following is displayed:

DO YOU WISH TO START THE SIMULATION AGAIN:
(1) YES
(2) NO EXIT PROGRAM
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Table F.1 File Names Used by EZPLOT

Error States File Name Whole States File Name

6L del lat.dat longitude long.dat

61 del long.dat latitude lat.dat

60Z  d_thetaZ.dat wander angle wander.dat

0_ phiX.dat altitude alt.dat

0Y phi Y.dat north velocity vel n.dat

_ _ _ phiZ.dat east velo:city vel e.dat

6VX  velN.dat vertical vel v.dat
velocity

6Vy velE.dat north accn.dat
acceleration

6Vz  velZ.dat east acce.dat
acceleration

6h delta h.dat vertical acc v.dat
acceleration

6hc  del h c.dat roll roll.dac

pitch pitch.dat

platform azimuth.dat
azimuth

If restart is selected, the sequence as described in Section F.2 will

start again. Exit will return the user to the DOS prompt.

F.4 S,-mary

As can be seen, the simulation is straight forward and steps the

user through the required inputs. By reading the program overview at

the beginning of the program and studying the steps outlined in this

guide, the user should have no problem operating the simulation.
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Appendix G: 23-Stat? Mo,!el Validation Results

This appendix provides a sumriary of the plots used to validate the

23-state model.
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Appendix H: Simulation Validation Results for Static Navigation

This appendix is a summary of the plots that were generated for

the static navigation validation. All plots except Figure H.3,

Figure H.11, and Figure H.12 show a comparison of the actual INS data

and the data generated by the simulation. Figure H.3 shows the altitude

results from the simulation Tho altitude for the INS ib .cLu lubcus

the baro-altimeter is not modelled and therefore has no uncertainty.

Figure H.11 and Figure H.12 display plots of the level acceleration

components experienced by the INS. Plots for the simulation are zero as

accelerometers are not modelled in the simulation.
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Appendix I: Simulation Validation Results for Straight-and-Level
Trajectory

This appendix provides a summary of the plotted results of the

straight and level simulated results. Each simulated navigation

parameter is plotted against the true trajectory. Where only one curve

may appear on the plot, there are two and the error is so insignificant

at the scale resolution of the plot as to appear to be zero. Apcrndix J

sunun.arizes the errors between the simulation and the true trajectory.
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Appendix J: Error Behavioz of Simulated Straight-and-Level
Trajectory

This appendix provides a summary of the error behavior of the

simulation relative to a true straight-and-level trajectory. The

results of the simulation are differenced with the true trajectory and

the results are plotted for analysis. Appendix I provides the plots of

data that are used to develop these error results.
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